
MAC-TR-32 (THESIS)

PILOT: A STEP TOWARD MAN-COMPUTER SYMBIOSIS

by

Warren Teitelman

September 1966

Project MACr
ODCMASSACHUSETTS INSTITUTE OF TECHNOLOGY

......

IM3~INAftw1Uf C0013

sachusetts Institute of Technology

Project MAC

545 Technology Square

Cambridge, Massachusetts

02139

Work reported herein was suprorted in part by Project
MAC, an M.I.T. research project sponsored by the Advanced

Research Projects Agency, Departnnt of DMfense. under
Office of Naval Research Contract Nonr-4102(01).

meproduction of thie report, in whole or in part, is
permitted for any purpose of the United States Government.

Government contractors may ubtain copies of this report from
the Defense DocumentAtion Center, Document Service Center,
Cameron Station, Alexandria, Virginia 22314. Orders will be

expedited from DDC if placed by your librarian, or scoe othar
person authorized to request docurwatc.

Other U.S. citizens and organi3ations may obtain copies of

this report from the Clearinghouse for Federal Scientiilo and

Technical Information (CMTI), Sills Building, 5285 Port Royal

Road, Springfield, Virginia 22151.

-,..... .4 - rt- - "*. -

FILOTt A T:P TV.V,1D

MAN-COMPUTPR SYMBIOSIS

by

l1 Warren Teitelman

B.S., California Institute of Technology
(1962)

S.M., Massachusetts institute of Technology
(1963)

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF
PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF
TECHNuLOGY

September, 196C

Signature of Author.... .).."
Department of Mathematics, June 14, 1966

Certified by, w wf-o'2lt.

" Th$Su suervisor

Chairman, Departmental Committee
on Graduate Students

~-*-"~ --- ~----* -

* t .. ~ ~fl A... - e.. ' 'm~i~a*~ -

PILOT: A Step Toward Man-Computer Symbiosis

by

Warren Teitelman

Submitted to the Department of Mathematics on June 14, 1966, in

partial fulfillment of the requirements for the degree of Doctor

of Philosophy.

ABSTRACT

PILOT is a programming system constructed in LISP. It is
designed to facilitate the development of programs by easing tiie
familiar sequence: write some code, run the program, make somne
changes, write some more cede, run the program again, etc. As a
program becomes more complL-, making these changes becomes harder
and harder because the implications of changes are harder to e.nti-
cipate.

In the PILOT system, the computer plays an active role in this
evolutionary process by providing the means whereby changes can be
effected immediately, and in ways that seem natural to the user.
The user of PILOT feels that he is giving advice, or making sug-
gestions, to the computer about the operation of his programs,
and that the system then performs the work necessary. The PILOT
system is thus an interface between the user and his program,
monitoring both the requests of the user and the operation of his
program.

The user may easily modify the PILOT system itself by giving
it advice about its own operation. This allows him to develop his
own language and to shift gradually onto PILOT the burden of per-
forming routine but increasingly complicated tasks. In this way,
he can concentrate on the conceptual difficulties in the original
problem, rather than on the niqging tasks of editing, rewriting,
or adding to his programs. Two de-ailed examples are presented.

PILOT is r first step toward computer systems that will help
man to formulate problems in the same way they now help him to
solve them. E):perience with it supports the claim that such "symb-
iotic systems' allow the programmer to attack and solve more dif-
ficult orc!ilems.

Thesis Supervisor: MarvIn L. Minsky

Titles Professor of Electrical Engineering

i |IH

ACKOWLED-LMENIS

The work herein was supported in part by Project MAC, an MIT re-
search program sponsored L.v the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract
number Nonr-4102(01), in part by the National Science Foundation
Fellowship Program, and in part by Bolt Beranek and Newman, Inc.,
Cambridge, Massachusetts, under the Advanced Research Projects
Agency, Contract No. AF19(628)-5065. Reproduction in whole or
in part is permitted for any purpose of the United States Govern-
mont.

I wish to express my gratitude to Marvin Minsky, for his super-
vision of this thesis, and to Seymour Papert and Oliver Selfridge,
the other members of my thesis committee, for their critical read-
ing of the manuscript. Oliver Selfridge's interest in the project
and personal encouragement went far beyond the call of duty. It
would be impossible to acknowledge all those not officially con-
cerned witn my thesis who both influenced and raassured me through-
out the last three years. However, I want especially to mention
Danny (Daniel G. Bobrow), who was always there when I needed him,
and Claudia, who was never really away.

iv

I ,

TABLL OF CONTENTS

Chapter
Page

Abstrct

Acknowlcdaements ii

List of Figures
iv

1 Introduction
I

2 Symbiotic Systems
9

3 The PILOT Syster'
21

4 Facilities in the PILOT System 45

5 Experiments with a (,uestion- 65
Answering System

6 Experiments with A Pzoblem Solver
93

7 Improving PILOT
139

Appendices
Page

1 Symbolic Differentiation in LISP
151

2 Using PILOT
153

3 List of Modifications
179

Bibliography
187

Biographical Note
193

iii

LIST OF "'IGURES

Number Page

1 The function ADVISE 36

2 HISTORY 39

3 User-PILOT Interfaces 40

4 A Simple Problem Solver 95

5 Flow Chart of PILOT 156

iv

- ~ - . r

* - - - -s'-- ..- . .- ..a~ a.~. -, -a.~ -~-'- w r jsw ,~r~.C

!-

CHAPTZR 1

PNTRODUCTION

The ;oal of artificial intelligence is to construct computer
programs which exhibit the kinds of behavior that we call 'in-
telligent' when we observe it in human beings. These programs
are usually so ccmplex that the programmer cannot accurately pre-
dict their behavior. He must run them to see whether any changes
should be made. Developing these programs thus involves a
lengthy trial and error process in which most of the prograuner's
effort is spent in making modifications. PILOT is a system de-
signed specifically to facilitate making modifications in pro-
grams. Exaiples of actual user-PILOT di-alogue are presented.

This thesis is con.:erned 1ith the problem of using computers

more effectively for solving very hard problems, particularly
0

problems in artificial 4ntelligencc. These prcbierls are ex-

tremely difficult to think through in advance, that is, away

from the computer. In some cases, the proga-.lier cannot foresee

the implications of certain decisions he must make in the design

of the program. In others, he can compare several alternatives

only by trying them out on the machine. Since he cannot accur-

ately predict the behavior of his program beca'-se of its size

and complexity, he must instead adopt the more pragmatic policy

oft "Let's run it and see what happens." The result is that

solving these problems involves a lengt'y trial and error pro-

cess of "write some code, run the program, make some changes;

writ4 some more code, run the program again, etc.," even assuming

* For the definitive paper oi Atiftctal Intelligence, *ee
Minsky's "Steps Toward Aztificial Intfligesics" in :"e~qCnb4um
and Feldman (see bibliography.; This iLtJer ?ook ako ccntains
M~nsky's bibliography on artif3cial intelligenct' a& wzll as
s1ne of the more significant ani intereiring papac of recent
w-ars.

that the programmer does not make any "programming errors,"

which is rarely the case.

Moreover, in artificial intelligence problems, this process

must often be prolonged beyond tho debugging phase. It is im-

portant for the programmer to experiment with the working program,

making alterations ano seeing the effects of the changes. Only

in this way can he evaluate it or extend it to cover more gen-

eral cases.

Unfortunately, it is often not a simple matter to make

changes in programs, especially large and complex ones, As a

result, they frequently becume "frozen," sometimes even before

they are fully operational. Advances in programming languages

have simplified the task of writing code. Time-sharing systems

make the computer more accessible in the "run the prograin"

phase. However, neither of there directly attacks this problem

of making changes.

PILOT is a programming system that is designed specifically

for this purpose. It improves and raises the le','l of interac-

tion between programmer and computer when he is modifying a

progtam. Yt takes over many of the chores of programming-

debugging-charging, leaving the programmer to concentrate on

conceptual! problems. PILOT is not a static system; it can grow

and evolve along with tne programs the user is developing. As

a result, it can be tailored to any particular user and any

particular problem. In sum, PILOT helps the programmer to be

more effective. This in turn enables him to attack and solve

more difficult problems.

2

-. ~~- f~TrA~'

PILC ' is writt.on in LISP '
I

' and c-erates in the

Project MAC tirmu-shar~ng syste. at the Massachusetts Irstitute
I 114.101

of Technology. Th next pages give some examples of

ae: ual user-PILOT dialogue. The user's inputs are in lower ca-e

an PILOT's responses in upper case.

In the first example, the user is experimenting with a

vIrsion of the Dceuctive Question Ansv.,ering System of Fischer

B1Pck.1
2

In this system, there are uirect staements, such as

"a t(I,home)" anu "went(at(I,airport))," anu conditionals, such

as "smaller(x,y),smaller(y,z)-4smaller(x,z)." denuctions are

pe rfurmed by substitution and by "detachment," which is a gen-

e-alizcd modus ponens. Thu3 given the two uirect statements

"smadler(car,house)" and *snallertdog,car)," and the above

conditional, the program can deduce "smaller(dog,house)* by

substituting dog for x, car ft ,, and house for z.

One difficulty with this scheme is that the deduction of

even a "true" statement may not terminate because the same con-

ditional may be considered repeatedly. This cannot be avoided

in general, because of the existence of "undecidable" proposi-

tions; but in many cases it can be circumvented. In this ex-

ample the user is experimenting with different methods to

achieve this.

The most straightforward apprcach would be for the program

to keep track of what it was doing. It could then apply some

simple criterion to decide whether or not it was "lo' ping,' and

if it was, to abandon the deduction. The danger with this is

that a particular criterion might stop a deductr..s whi.ch would

otherwise terminate - or it might not recognize one that would

3

:z*

not. But, this is the point of experimenting with a working

program: to try out various ideas.

In our example, SOLUTION1 is the function that handles new

"questions." The user wants to prevent it from entering itself

more than twice recursively, In other words, this is the cri-

terion he is considering.

(tell solution I, (before number advice),
If (countf history ((solutionl -))) is greater than 2, then quit

The user tells PILOT to modify the function SOLUTION1. The

phrase "(before number advice)" tells PILOT to insert this ad-

vice immediately before the advice containing the key word

"number." (This refers to advice the user has previously given

SOLUTION1 - see Chapter 5 for complete experiment.) The user

wants SOLUTIGNI to cease computation whenever "(countf history

((solutionl -))) is greater than 2." COUNTF is a general count-

ing function available in PILOT. Its arguments here specify a

search through the current "history" of the computation counting

the number of times the function SOLUTION1 has previously been

entered. The "history" is provided and kept up to date auto-

matically by PILOT.

TRANSLATION: (EDIT SOLUTIONi BEFORE ((INSERT (ADVICE COND
((GREATERP (COUNTF HISTORY (QUOTE (1SOLUTION1 -))) HISTORY

2) (LIST
NIL))

(T NIL)) BEFORE NUMBER (BACKTO ADVICE) UPI) STOP).

This is the translation of the user's request. It has been

interpreted as a call to the function EDIT. EDIT will INSERT

at the correct place the piece of advice that is the translation

4

of *if (countf history ((solutionl --) is greater than 2,

then quit."

TRANSLATION: (FLIP
($ NUMBER (BArKTO AUV:CE) UPI $)
(1 2 3 (ADVICE COND

((GREATERP (COUNTF HISTORY (QUOTE ((SOLUTIONi -1)
HISTORY) 2) (LIST

NIL))
(T NIL)) -2 -1))

(SOLUTIONl BEFORE)

This second translation takes place inside of EDIT. (INSERT ...

BEFORE ...) has been transformed into a call to FLIP. FLIP

will insert the advice at the correct point. Actually FLIP

will construct a new list with this advice inserted. EDIT then

replace' the old advice structure with the new one, and returns

control to PILOT for more requests.

Later, the user considers a more sophisticated criterion for

terminating deductions. For this, he needs a function to deter-

mine whether two questions are identical, except for substitu-

tion of variables. He defines a new function, MATCHES.

(define matches (x y) as
If x is null, then y is null,
If (car x) is equal to (car y) or

(variable car x) and (variable car,1y)
then (matches cdr x cdr y))

using PILOT to transl, te from his own language into LISP.

t5

TRANSLATION: (DEFLIST ((MATCHES (LAMBDA (X Y) (COND
((NULL X) (NULL Y))
((OR

(EQUAL (CAR X) (CAR Y))
(AND

VARIABLE (CAR fl)
VARIABLE CAR Y (MATCHES (CDR X) (CDR Y)))

(T NIL))))) EXPR)
(MATCHES)

This is the translation of his request. Here instead of calling

EDIT, PILOT calls DEFLIST, which defines MATCHES as a function

Can EXPR) of two variables, X and Y. Note that PILOT, because

it knows how many arguments a function takes, has correctly

parsed (MATCHES CDR X CDR Y) as (MATCHES (CDR X) (CDR Y)),

(VARIABLE CAR X) as (VARIABLE (CAR X)), etc.

One of the claims of PILOT is that it.frees the user from having

to consider the inner workings of his system. This is illus-

trated in Lhe above example. Here the user has taken an

unfamiliar system, wrilten by a different person, and performed

certain nontrivial modifications. This was done with only a

superficial knowledge of the design and construction of this

system.

However, it is when the user programs within PILOT, taking

into account its capabilities, that the greatest returns are

obtained. He can proceed almost directly from flowchart to

working system, filling in the details using PILOT. Thus it is

no longer necessary to complete the details of planning before

commencing to program. The program can be developed on-line.

6

-. .- - *~* ~-*** ~ -~ = 7

This is the case with our seconr. exanpic. The user has

programmed a simple flowchart. Some of th. functions even have

null definitions, that is (LAMBDA NIL NIL). The following dia-

logue shows how he can modify his system to solve a problem new

to its the cannibal and missionaries problem. (Note that in the

last line, the computer, with the line *T*, announces that it

has, in fact, successfully solved the problem.)

solve (cannibal and missionaries)
(DONT KNOW HOW)

(start with sidel (m m m c c c) side2 nil, to side2, from sidel)
START

(tell goalp, return with sidel is null)
GOALP

(tell moves, return with '((movel) (move2)))
MOVES

(define movel as altran valueof from '($i) '((2) 1 3))
MOVEI)

(define move2 as alltran valueof from '($I $ $I) '((2 4) 1 3 5))
(MOVE2)

(tell make, to (y) (setq y from) and bind (valueof ' from)
to (cdr move) and bind (valueof ' to) to (append car move valueof to)
and bind from to to and bind to to y)
MAKE

(tell progress, if ' m is a member of sidel and ' m is a
member of side2 and (countq sidel ' m) is not equal to
(countq sidel c), then quit)
PROGRESS

(gps : save (cons from side2) on hist)
GPS

(after gps : pop hist)
GPS

(tell progress, if searchf hist (((- fron) S / (setequal (= side2))))
then quit)
PROGRESS

solve (cannibal and missionaries)

7

7_7 -..t1'.',.rZ -IV,7I

These examples give the flavor of th2 interactions between the

user and PILOT. It is not expectea that the details of the

dialogue will be self-evident. Remember that while there are

many conventions used in communicating with PILOT, they are the

user's conventions, in this case mine, and as such have intui-

tive meaning to me. Learning to use PILOT involves building a

language for communicating certain operations. The above ex-

amples indicate, to some extent, the type of language I have

found useful. If you were using the system, you could, and

undoubtedly would, change the format of some or all of the oper-

ations specified to PILOT in these examples. This in part, is

what makes PILOT symbiotic.

* ---- -- - -. - -- - -a---- -: : ...

~~~~~ , .. ,. , ~ m 
° '

,



CHAPTER 2

SYMBIOTIC SYSTEMS

Man-computer symbiosis involves very close coupling of man
and machines. This chapter describes several of the more suc-
cessful "symbiotic" programming systems. While none of these
perform operations for the man that he could not do himself, they
allow him to operate at a greater level of abstraction, and
thereby to concentrate more fully on the proble. he is trying to
solve. This in turn has a substantial effect on his productivity.

Symbiosis is a mode of living characterized by intimate or

constant association or close union of two dissimilar organisms.

The usual implication is that the association is advantageous to
118]

one or both. There are many examples of symbiosis in both

the botanical and zoological worlds, among these the symbiosis

of algae and funqi (called lichens), ants and aohids, and the

pilot fish and the shark. But until 1960, the term symbiosis

had only been applied in the biological context.

In 1960, Dr. J.C.R. Licklider introduced the term man-

computer symbiosis in an often-cited paper by that name. 122]

Concerning the problems involved in developing symbiotic systems

he stated:

"Among the problems toward which man-computer symbiosis is
aimed -- problems that men and computers should attack in part-
nership -- are some of great intellectual depth a,.. intrinsic
difficulty. The main problems that must be solved to bring man-
computer symbiosis into being, however, appear not to be of that
kind. They are not easy, but their difficulty seems due more
To-limitations of te-hnology than to limitations of intelligence."
123] (italics mine)

* the latter symbiosis, that of pilot fish and shark, is part
of the derivation for the name PILOT. The name is also meant to
reflect the fact that this is a pilot system for man-computer
symbiosis.

9



M'.ich effort has been devoted to developing symbiotic syster

in the few years since this statement was made. In these systen

the computer performs the routine work -- a surprisingly large

percentage of the total amount -- that must be done to prepare

for insights ana decisions in technical and scientific thinking.

Man sets the goals, performs the evaluations, and in general,

guides the course of the investigation.

In evaluating these systems, one must realize that there ar

degrees of symbiosis. You can always improve a system. However

Licklider has set as a subgoal the development of "a mechanism

that will couple man to conputer as closely as man is now

coupled to man in good ultidisciplLnary scientific or engineer-

ing teams." The systems described in the following pages cer-

tainly achieve this goal.

Sketchpad (46)

Most computers use keyboards for on-line input and output.

This exclude , the use of diagrams for communication with the

machin-. About 1960, an interest began to build up in developin

computer display systems whereby man and computer could converse

rapidly through the medium of line drawings. The most signifi-

cant system to arise from this impetus was "Sketchpad," the work
461

of Ivan Sutherland. Using Sketchpad, the user could make

two-dimensional sketches vith a light pen directly on a computer

CRT display, and then modify and move parts of the drawing arounc

as he wished. Sketchpad would preserve the topology of the draw-

ing and carry out copulation on the figures so drawn. For

example, in one mrOce, wh-en the user drew a line, the computer

would draw an absolutely straight line. When the user made two

lines come almost together at a corner, the computer would make

10

z



them come exactly together, etc. Furthermore, Skstch~p' adouid

remember that the lines were joined so that if t'e operator

moved one of the lines, it would move the other one in such a

way as to maintain the intersection at the corner.

In other modes of operation, Sketchpad would make perfect

arcs, straighten up figures so that nearly horizontal lines were

made exactly horizontal and nearly vertical lines were made ex-

actly vertical. It would remember the shape of a figure or sub-

figure so that the user could request replicas of this figure at

various points of the diagram. Sketchpad thus rermitted the user

to make an assembly of several elementary figures, to replicate

assembles, to make assemblies of assemblies, etc.

In one impressive demonstraticn, Dr. Sutherland sketched

the girder of a bridge, and indicated the points at which members

were connected together by rivets. He then drew a support at

each end of the girder and a load at its center. The sketch of

the girder then sagged under the load, and a number appeared on

each member indicating the amount of tension or compression to

which the member was being subjected.

Sketchpad has been extended to three dimensions 6y

Johnson.12 C] In Sketchpad III, the user can ada a line to a

plan and have it appear simultaneously in the front field, the

side view, and the oblique representation. When he rotates the

oblique representation, the orthogonal views change appropri-

ately, etc.

Sketchpad is primarily a research system; no one today is using

Sketchpad. However, the insights gained during its development,

A"



and the p yc1ological Jmiact of the program itself nave greatly

influenced the const: uction of symbiotic systems, especially

those involving graphical input and output.

Computer-Aided Circuit Design

Another graphical research program involves the on-line con-
(411

struction of electrical networks. An electronic circuit

designer interacts directly with the computer through a type-

writer and CRT graphical input-output equipment. He builds his

circuit by keying in an element at a time to the computer, plac-

ing the light pen on the CRT to show where it goes. In this way,

he can compose on the screen any circuit he wishes; then he can

ask the computer tu analyze it. 
I

The most significant consequence of this Man-machine inter,

action, as with the other systems described, is the short time,

usually on the order of seconds, between a user request and the

(263
computer response. Lindgren statest "the 99.99 percent of

engineers who are designing circuits without on-line graphical-

language facilities, are, in one sense, already 'living in the

past.'"

* a *

One of the most obvious areas irn constructing symbiotic

systems is mathematics, since mathematical tasks are usually

better defined than those in other fields. Many "mathematical

laboratories" have been developed to provide the mathematical
scientist with the services of an on-line computer. Some of

these are described below.

12



The Symbolic Mathematical Laborator"
[2 9 1

One of the problems a user performing any .:e~lisuic niatne-

matical computations soon encounters is the inadequaLy n. the

keyboard for communication with the machine. Consider the follow-

ing expression:

2.1 log w 2 .-
Rolw)=-• + ). (wt)dt1 r.(Iogw) 0 a-i

For writing such expressions, the mathematician mplr~ys a large

character set, and utilizes subscripts and superscripts e:ttremely

liberally. He observes certain conventions concerniny the phys-

ical size, grouping, and placement of subexpressions. All of

these make it easier for him to reau and comprehend mathematical

formulae. Even if a keyboard could be designed to handle ex-

pressions of the above type, it would have to be unreasonably

large and complex. In addition, I'vw are subexpressions to be

referred to? The methematician can point to them or in other

ways refer to them directly, when he is working on paper or

blackboard. Requiring him to input a subexpression each time

that he wijhes to refer to it would make for a very unsatibfact-

ory system.

28 , 2, 37]

The Symbolic Mathematical Laboratory is a system

designed to solve these problems. In the original proposal(
3 71

Minsky describes a program "for displaying publication-quality

mathematical expressions given symbolic (list-structure) repre-

sentations of the expressions.' The goal is to produce

"portraits" of expressions that are sufficiently close to con-

ventional typographical conventions that nathema:icians will be

able to work with them without much effort -- so that they do

13

.Al 

:



not have to learn ;..i:h in the way of a new language, so far as

the representation of mathmatical formulae is concrned."(
3 7 )

"We imagine that the user is engaged in performing a math-
ematical exploration. For example, lie might be trying to find
a solution to a ifferential equation. At the moment, he has
displayed on the screen cne or two equations, and he nas in his
head the name of several other expressions or partial results
already studied and filed away. lie decides to perform one action,
e.g., substituting a displayed equation, solving it for some
variable, expanding some subexpression in a certain way, or
perhaps simply displaying something else. This action is re-
quested by some combination of light-pen and keyboard signals.
These signals are encoded and transmitted to LISP, which com-
putes or retrieves the required new expressions and transmits
them back to the display system. The latter than compiles and
displays the desired new picture."

1 3 71

The basic ingredient of this system is the program sequence

that converts an internal mathematical expression into a conven-

tional printed representation. Martin uses a Polish prefix

notation convenient for LISP operations to represent expressions

internally. For example, (PRD (PRO 2 kL (PWR PI -1 NIL) NIL)

(PRD (LOG OMLGA NIL) (PINR (PLS *A 1 N!L) -1 NIL) NIL) NIL) is

2.1 1o w *
the internal representation of T + * Since the corres-

pondence between internal representations and wnat is being dis-

played is maint.ineJi by the program, the user can refer to any

particular subcxpression, by pointing at it, and the program

selects and operates upon the corresponding internal structure.

The converse problem of converting the external printed

representation to internal representation has not been treated

as extensively in Mnrtin's program, although he intends to add

a charocter recogrition scheme based on ARGUS 14 7 ) for direct

input from the :RT. However, it is not as serious as the display

* The R (w) expression on the previous page is an actual example.
Se? [28' for a photograph of this expression as it appears in

his system.

14

* ..- A -. -- d.s . af~ ~*,~n,. -



probler, because it is not done as often, -- si.ice most c' the ex-

p..essions used by the mathematician will either be genercted by

the program or be subexpressions of expressionF already it. tre

system. Therefore, the user can tolerate entering expressionE

by soihe tedious, more conventional keyboard method, especially

since he can see the displayed expression as it goes in and

correct the computer if it, or he, has made any mistakes.

Other Mathematical Systems

D. Maurer has designed a system for a more sophisticated
1301

mathematician, specifically the algebraist. His program is

conversant in such subjects as groups, subgroups, ideals, etc.,

and can respond to requests of the form: generate the set of all

normal subgroups of a particular group; generate subsemigroup z

from element x of y; etc. Maurer has preproqrammzd many of the

operations needed by the algebraist, and has included facilities

for introducinq new ones as needed. However, the system has

not yet been put to practical use.

11J

MATHLAB is a LISP program which emphasizes continually

increasing powers. MATHtAB can formally integrate certain

functions, differentiate, factor, expand, simplify, etc. Since

it is written in LISP, now operations can be added very easily.

MATHLAB is currently operating on the Project MAC time-sharing

system.

CALCULAID and MAP are two more systems for using the com-

puter as a mathematician's helper. CALCULAID is oriented

towar.!s writing programs to solve large problems with much data.

It has built in FIT and REGRESSION operators, and a conveniont

way of specifying matrix operations. MAP 1211 has facilities fur

15

.. .........•V " -

, it



performing convolutions, Fourier transforms, and other more

sophisticated analytical operations. In MAP the Lser is en-

couraged to consider himself as conversing with the computer,

which then performs the operations. This is in contrast to

CALCULAIU, where the system is not viewed as an agent so much

as a collection of useful subroutines, easily available.

MUSIC Laboratory

Perhaps at the other end of a spectrum is an attempt to

create cn environment, on the computer, which is conducive to

the composit.ion anid analysis of music. Using the compluter as an

expensive instruiwent is not a new idea. In 1961, Peter Samson

wrote a music compiler for the Digital Equipment Corporation
1431

PDP-l computer. The basic idea was that the user would en-

code the musical score inti a series of numbers, each note being

denoted by two numbers - one for its pitch, the other for its

duration. The computer would then play the music, utilizing its

digital-analog converter to control the voltage on a speaker

directly. Thus the computer would play a middle C by varying

the voltage 256 times a second, essentially building its own

square wave. The computer was even fast enough to construct in

real time the wave lorm corresponding to a three part harmony.

However, the MUSIC Laboratory project currently underway at

M.I.T. has even more ambitious goals.

The standard teletype of the DEC PDP-6 has been augmented

by an 88 key pian. keyboard which is connected airectly to the

computer. Thus the user can play a melody, hear what it sounds

like - as performed by the PDP-6 - and also see the score dis-

played visually on the scope. He can then edit the score, using

No documentation is available.

16

UPT "%&rn'~c~rrrt



the light pen, the teletype, or the piano keyboard, and hear it

played again. Programs are being written to allow the user to

request the computer to fill in a harmony to a particular

melody, or to construct variations on a theme 3nd to play them

back to the user.

!:nergetic Systems

The most important point about the systems described above,

a point which also applies to PILOT, is not so much that they

are symbiotic, i.e., cooperative, as that they are synergetic.

Synergism is the cooperative action of discrete agencies such

that the total effect is greater than the sum of the two effects

taken independently. An example of this is the action of peni-

cillin and streptomycin when taken together. The extreme potency

of the combination of tranquilizers and alcohol presents another,

more familiar example.

The most significant aspect of the systems described above

is the synergetic action of man and machine that they foster.

Close examination of these programs reveal that they do not, in

themselves, do anything remarkable, nor do they represent any

significant advance in sophistication. Computer programs that

analyze circuits or invert matrices in the course of solving a

problem are not uncommon. However, there is a substantial

effect on the productivity of a man if he can immediately sub-

stitute an expression for a variable and integrate. The mere

fact that he could have performed each individual operation him-

self is not important, nor does it affect the synergetic quality

of the interaction. What is important is that the overhead in-

volved in switching tasks is eliminated, or at least substan-

tially reduced. Thus the user can operate at a greater level of

17



abatraction and thereby concentrate more fully on the p.:oblem

itself.

This Lame phenomenon occurs with the so-called higher level

programming languages. These languages do not do anything for

the programmer that he could not do himself. In other words,

you could program everything in machine language directly. How-

ever, the fact of the matter is that suitable programming lang-

uages .'o allow the progranuner to attack and solve much more diffi-

cult problems. As an example, ten years ago an M.I.T. graduate

student in electrical engin.ering received a master's degree witht

a thesis (program) for perforwing ymbolic differentiation. This

same feat can be duplicated today in a half dozen lines of LISP

coding. The point iL not that LISP makes it easier to solve

problems, but that thereby LISP makes it possible to solve harder

problems. In this particular example, the amount of effort re-

quired to construct a differentiation routine in LISP was co'-

parable to that required for a small subroutine. This is where

the synergetic effect enters because now the programmer can

build systems in which this differentiation routine is precisely

that: just a small subroutine (as it is in the systems of Martin

and Engelman).

The question here is one of human limitations. Once the

pcogrammer has constructed and dobugged a differentiation routine,

it should not matter whether it was written in six lines of LISP

or five thousand machine instructions. In practice, however,

there is a lm~t to the size and complexity of -i system that ooe

person can successfully construct. assuming that he is starting

from scratch. Unfortunately, with artificial intelligence pro-

* See Appendix 1.

18



grams, this limit is frequently encountereu whiile there are

still ideas remaining to be tried.

The PILOT system represents an exercise in applied synergism

that parallels and complements that of high level programming

languages. We might draw the analogy that PILOT is to an edit-

ing program what high level programming languages are to m achine

code. PILOT does not do anything for the user in the way of

making changes that he could not do himself by editing or re-

writing. But the fact that PILOT does do it means that the user

dues not have to. As with the systems described earlier, he is

free to operate at a much higher level of abstracticn and un-

encumbered by bookkeeping. He thus finds himself able to solve

problems he could not even consider before. This is what makes

user-PILOT a synergetic system.

19



CHAPTER 3

THE PILOT SYSTEM

The function of PILOT is to allow the programmer to treat
his program as if it were a block diagram. This places certain
requirements on PILOT in terms of the structure of programs, data
in programs, and modifying programs. This chapter presents a
model of programs and p'ogramming that emphasizes how a program
looks to its aethor. The basic building blocks of programs in
the model are procedures, anu the operation of advsin consists
of modifying the interfaces between these pioceuures. Imple-
mentation of a system that permits ddvising is described within
the LISP programming system. Viewini "he entirn system of user-
PILOT-programs as one program, it is possible to modify the
interface between the user and PILOT to permit more flexible
interaction, as well as modifying the interface between PILOT
and the user's program to allow mere conplex types of advice to
be specified.

One of the most useful ways of describing and representing

a computer program is the block diagram. In it, the individual

processes that take place inside the program are clearly isolated.

Furthermore, it permits either elaboration of the details of some

part of the computation, or bypassing details (by merely drawing

a small rectangle and labeling it PROCESS). It is valLable in

planning a program, because it makes it easy to see the flow of

control and the interactions between various parts of the program.

Moreover, a program in thiis representation can easily be modified,

e.g., move blocks from one point to another, change lines of

communication, add new blocks, replace old blocks, etc.

Unfortunately, computer programs tend to lose the nice

features of block diagrams once they are written as a sequence

of instructions.

21



The function of PILOT is to allow the programmer to continu4

to treat his program as if it were a block diagram. This places

certain requirements on PILOT in terms of the structure of pro-

grams, data in programs, and modifying programs. These are

discussed below.

Structure of Programs

One of the principal advantages of block diagram representa-

tions is their flexibility. They do not require him to be con-

sistent abcut the amount of detail from diagram to diagram. If

it seems appropriate to the prcgrar.er to describe a certain

section of his program in great detail, while only sketching

briefly some other portion -- for whatever reason he may have --

he can easily do this. Furthermore, he can represent the same

program in different ways at different times; he is not compelled

to make one choice and be bound by it.

If this flexibility is to be captured in PILOT, the system

cannot restrict the user to some narrow range of preconceived

structures. With respect to desc ibing and representing programs,

PILOT should enable the user to ma Intain a wide range of choice.

Regardless of objective criteria far choosing one representation

over another, the user must be allowed to choose whatever

structure seems the most convenient or dcsi;able to him. In

other words, he must be allowed to make a s:bjective choice.

Subroutines

The standard way of structuring a program (as opposed to a

block diagram) is by meant of the subroutine. Prograrmers use

subroutines to make theit programs look more like their block

22

77;".



*

diagram representation. This makes constructing and debugging

a program much easier. Subroutines in a program are the analogue

of the blocks in the block diagram, and, to a certain extent,

their use retains many of the advantages of the block diagram.

For example, to move a subroutine from one place to another in

the program, all that is necessary is to move the call tolthe

subroutine - usually only one or two instructions. To in crt a

subroutine, all that is necessary is to insert a call (astuming,

of course, that the subroutine has been written) . In the same

way that blocks can be treated as separate entities, it is often

possible to treat subroutines as separate from the rest of the

program, ana to construct and modify them accordingly. Thus, at

least to the level of the subroutine, programs can be treated

as block diagrams.

However, below this level, rigor mortis sets in. The indi-

vidual blocks correspond to the way the programmer partitions

the task, and the subroutines correspond to these blocks. But

he may change his mind. What was viewed as a single operation

initially may at some later point best be considered as three or

four distinct operations. Remedying this in the block diagram

is simple: replace the block by several smaller blocks. However,

breaking a subroutine into three or four smaller sections is

often not that easy. And yet frequently the programmer must be

able to deal with units smaller than the subroutine.

Pricedures

The "atomic" unit of structure in my model of programming

will be the procedure, not the subroutine. A procedure is

* Ott.er considerations such as computation time, and program
roace also affect the use of subroutines.

23



defined as a collection of n entrances and m exits together with

input-output characteristics. This definition purposely does not

require a procedure to be any easily isolated part of the program.

If, of course, a procedure is a subro,)tine, identifying it is

simplified. However, a procedure may be a part of a subroutine,

or even parts of several subroutines. Essentially, a procedure

is a chunk of code that the programmer wants to treat as a single

unit. PILOT enables him to do so.

Data in Programs

Procedures are defined in terms of what they do, that is in

terms of transformations on certain variables. These variables

are called essential variables. Essential variables are not the

only variables that are altered by a procedura. For example, in

a time-sharing environment, the state of certain disc and drum

variables (registers) may change thousands of timea while execut-

ing a program. Even if we consider only variables specifically

utilized in or changed by the operation of a program, many of thest

will be low-level, or local variables, and thus not important to

the programmer. Describing the state of the computer at any time

during a computation in terms of essential variables is more in

keeping with the block diagram.

Essential variables are similar to the arguments of a sub-

routine. However, in many subroutines the essential variables are

not passed through the calling sequence. Furthermnore, procedures

need not be subroutines, nor have a specific call. Thus the data

used by the procedure may be scattered throughout the program.

However, it must be available to the procedure. Some information i

not available to a procedure. "or example, the only variables that

may be referenced insiue of a FORTRAN subroutine, besides the

arguments to the subroutine, are those specifically declared to

24



be COMMON. Some information may not be available to the progrsm

at all. For example, information regarding the function that

orIginated the call to a particular FORTRAN subroutine is not,

in general, available anywhere within the program. (Of course,

the programmer can specifically provide this information by

including the name of the function as one of the inputs to the

subroutine in question.)

Variables that are available but non-essential are called

extraneous. In many programming languages, there can be no

extraneous variables -- everything is either mentioned or else

not available. (At the level of machine language, of course,

everything is available.) This immediately precludes tne compu-

tation of the name of a variable, i.e., indirect reference to it.

Extraneous variables are important because they may at some

time become essential to some procedure, as a result of program

modification. If they are not available, they cannot be used.

PILOT automatically makes available information regarding what

is happening "abeve," i.e., what functions have been called,

what their essential variables are, etc., so that the programmer

does not have to foresee explicitly what information he will

need in a particular procedure.

Modifying a Program

There are two ways a user can modify programs in this sub-

jective model of programming: he can modify the interface between

* There are exceptions. In LISP 1.5, uncompiled functions have
their arguments bound on the ALIST so that in any particular
function, all of the essential variables of fun ns entered
previously are available. Similarly, in COMIT,TJ'6 the 127 shelves
are available, but often are extraneous variables. But, by and
large, the above statement is true.

25

I II • I I I I



procedures, or he can modify the procedure itself. (Since pro-

cedures are themselves mace up of procedures, modifying a pro-

cedure at one level may correspond to mod'ifying the interface

between procedures at a lower level.), Modifying the interface

between procequres is called advising. Modifying a procedure

itself is editing.

Advising is the basic innovation in the model, and in the

FTLOT system. Advising consists of inserting new procedures at

ny or all of the entry or exit points to a particular procedure

(or class of procedures). The procedures inserted are called

"advice procedures" or simply "advice." Since each piece of

advice is itself a procedure, it has its own entries and exits.

In particular, this means that the execution of advice can cause

the procedure that it modifies to be bypassed completely, e.g.,

by specifying as an exit from the advice one of the exits from

the original procedure; or the advice may change essential vari-

ables and continue with the computation so that the original

procedure is executed, but with modified variables. Finally,

the advice may not alter the execution or affect the original

procedure at all, e.g., it may merely perform some additional

computation such as printing a message or recording history.

Since advice can be conditional, the decision as to what is to

be done can depend on the results of the computation up to t"-at

point.

The principal advantage of advising is that the user need

not be concerned about the details of the actual changes in his

program, nor the internal representation of advice. He can

treat the procedure to be advised as a unit, a single block,

and make changes to it without concern for the particulars of



this block. This may be contrasted with editing in which the

programmer must be cognizant of the internal structure of the

procedure.

In the PILOT system, both of these facilities are available.

Considerable effort has been devoted to providing the user with

a sophisticatea editor, with expandable syntax and semantics, in

order to match the flexibility of the advice-giving mechanism.

The editor allows the user to specify structural changes con-

veniently, while the advisor handles interface modifications.

The advisor is usually more convenient, since it handles more of

the details. However, the user may wish to perform what could

be an interface modification by editiny the procedure itself,

possibly because of efficiency. In fact, for certain types of

operations, the advisor itself uses the editor.

It is clear that both advising and editing complement each

other, and that both are needed to ensure the programmer freedom

to treat his program in ways that seem desirable to him. The

choice of which of the two facilities he wishes to use for a

particular operation is a matter of his personal preference, and

depends on the nature of the change.

Class Modifications

It is most important that the user be able to modify a class

of procedures. as well as individual procedures, i.e., to refer

to procedures associatively as well as nominally. Until no' we

have assumed that the procedure to be modified hau alreauy been

identified and located, but this is not necessarily the case.

For example, the user may wish to sjzcify changes to a class of

procedures in which certain members have not yet been uefined.

27

A:~1



Alternatively, the decision of whether or not a modification
applies to a particular procedure may have to be oostponed until
the procedure itself is actually entered. In the former case,
it will be necessary to monitor the definition of new procedures
in order to make the appropriate modifications. In the latter
case, it may even be necessary to require all procedures (or a
sufficiently large class of procedures) to inquire at the time
they are called whether or not there are any modifications that
should affect them. In both cases, it is not possible to locate
procedures that are to be modified at the time the user specifies

the modification.

Implementation

It is clear that implementing PILOT will be greatly facil-
itated by an appropriate choice of programming language. We
must avoid translators, assemblers, and compilers that assume
th t the programming will be completed before the translation
is begun, and that the program will not actually be run until
all the assembling and compiling has been finished. In languages
of this type, FORTRAN, COMIT, MAD, etc., it is difficult to
write programs that construct or modify procedures because the
communication between procedures is so deeply embedded in the
machine instruction coding, that it is very difficult to locate
entrances, exits, essential variables, etc.

The language I have chosen to use is LISP 15.3233,1!
The LISP formalism is convenient for programming recursive tasks,
which makes it good for problem solving and other heuristic pro-
grams. It is a list processing language, which is a necessity
for programs of this type because storage allocation requirements
cannot be preaicted prior to run time, as the size and structure

28

-7



of the data are determined by the computation. LISP is well

suited to symbol manipulation, which means that it is possible

to talk about the names of variables, and perform computations

which produce them. Finally, I chose LISP, over IPL or SLIP

for example, which also possess several of the attributes above,

because I am familiar with LISP and find it convenient to pro-

gram in the functional notation it provides..

In LISP, all data are in the form of symbolic expressions,

or S-expressions. S-expressions are of indefinite length and

have a branching tree structure in which subexpressions can be

readily isolated. LISP computations are also written in the

form of S-expressions. This makes LISP especially adaptable

for our purposes. Like machine languages, and unlike most other

higher level languages, one can write programs in LISP which

will generate programs for further execution. rurthermore, it

is possible to execute data as programs, and conversely treat

programs as data.

This suggests an-easy way of impiementing advising: define

a LISP function, ADVISE, which treats as data the advice to a

procedure and the procedure itself, and executes the procedure

with the appropriate modifications. By giving a name to each

procedure that is advised, we create a canonical place where
information asrociated with the procedure can be stored: its.

property list. The definition of the procedure, and the advice

associated with it can be stored on and retrieved from its prop-

erty list by the function ADVISE. Thus ADVISE requires only

the name of the procedure, and the name of the entry or exit of

the procedure. The opcration of advising a procedure is there-

fore reduced to locating its entry and exit points,'and replacing

29



them with a call to AOVISE, specifying the name of the procedure,

the name of the entry or exit. The advice is stored on the prop-

erty list of the name of the procedure, and the corresponding

modifications are automatically performed when ADVISE is called.

The actual definition of the function ADVISE is not this

- general. The current implementation imposes the restriction that

only one entry and exit may be allowed. This is because the

effect of multiple entries and exits can be achieved within the

current implementation, and because it is questionable whether

the greater generality would justify the extra effort.

Multiple Entries and Exits in LISP

The notation of LISP is function oriented. It encourages

the user to define different functions for different tasks,

especially because LISP makes it easy to call functions, and to

nest sequences of function calls. Each function call in LISP

has a single, canonical entry and exit, namely that provided by

the LISP interpretcr or compiler. The user normally ooes not

concern himself with entries and exits; instead he thinks in

terms of inputs (arguments) and outputs (values). The only ex-

ception to this occurs within the special form "PROG."

The PROG feature in LISP allows one to write ALGOL-like

programs containing a sequence of LISP statements to be executed.

* This discussion presumes some familiarity with the LISP
notation.

30



This is a concession to the fact that certain tasks are easier

when not expresse6 in functional notation.

In a PROG, the programmer can explicitli control the flow

of computation by using labels and GO statements. For example,

the function LENGTH defined without using a PROG is:

(LAMBDA (X) (LENGTH1 X 0))

where LENGTH1 is defined as:

(LAMBDA (X Y) (COND

((NULL X) Y)

(T (LENGTH1 (COR X) (ADD1 Y)))))

Here using a PROG results in a more natural definition:

(LAMBDA (X) (PROG (U V)

(SETO V 0)

(SETQ U X)

A (COND ((NULL U) (RETURN V)))

(SETO U (CUR U))

(SETO V (ADDl V))

(GO A) ))

It is only inside a PROG that the LISP programmer can effect

multiple entries ail exits, namely by entering or leaving a pro-

cedure, i.e., a collection of LISP statements, at different labi.ls.

Multiple entries and exits from LISP functions are simulated by

transmitting extra information in the calling sequence or value

of the function. For example, in machine language programming

* PROGS are also used because they produce more efficient compu-
tations when compilea then the corresponding recursive definitions.
This occurs because it is not necessary to rebind all of the argu-
ments of the function on the push-down list for each iteration
of the process. For this reason, experienced LISP programmers
occasionally use PROGS even when a recursive definition would be
more natural and intuitive.

31

i



it is often common practice to write the trigonometric functions

as one subroutine with different entrances. This could be done

in LISP by defining TRIG as a function of two variables, X and Y,

where X was either SIN, COS, TAN, etc., and have the appropriate

routing performed inside TRIG. Since it is so easy to transmit

extra information in LISP, this is usually the way it is done,

ezpecially since there is an advantage in having separate oper-

ations, or procedures, correspond to separate functions, many

facilities such as TRACE, BREAK, COMPILE, are oriented around

functions.

Implementing an advising algorithm in which multiple entries

and exits were possible would involve placing traps at each

entry and exit and calling the function ADVISE at that point.

This could be done, because one can only "GO" to a labelled

statement, and PROG labels are easily distinguishable from LISP

forms that are to be executed. This has not been done because

it has not, as yet, been needeu.

ADVISE

ADVISE, as currently implemented, is designed to modify

the interface of a procedure which has only one entry and one

exit. ADVISE has four arguments: the name of the procedure,

the names of its arguments, the values of its arguments, and the

* There would be some slight complications because of the par-
ticular implementation of LISP at Project MAC, where PILOT is
now operating. "GO" statements cannot be used when the label
is not local. Thus if we inserted a call to ADVISE at each label,
and then, inside of ADVISE, wished to execute (GO label), we
could not do so. The alternative would be to build our own
version of the LISP interpreter inside of the ADVISE function.
This would be cumbersome and inefficient.

32

"W!f " HO,,F~ NIpmm



S-expression aefinition of the procedure. ADVISE records on the

HISTORY list that this procedure has been entered with certain

arguments, anU retrieves the advice associated with entry to this

procedure unuer the property BEFORE on the property list of the

name of the procedure. (We can think of the procedure as having

a canonical entry point labelled BEFORE.)

If a LISP form appears under the property BEFORE, instead

of a list of advice, ADVISE treats it as a function of one vari-
*

able and applies it to the single argument HISTORY. The value

of this cc.iputation is then used as the advice associated with

the entry to tne procedure. Ii. .his way, the user can achieve

the effect of a multiple entry, i.e., different advice can be

used for different entering conditions.

Each piece of advice is a LISP computation.' ADVISE evaluates

4.n turn each individual piece of advice, making available all

information that is available to the original procedure. The

evaluation of auvice may cause these variables to be modified,

or even create new, availa.le variables by modifying the HISTORY

list. (Communicetion between pieces of advice can be achieved

this way.) When all of the advice has been evaluated, the pro-

cedure? itself is executed, and its value is sLored on the vari-

able VALUE and put on the HISTORY list.

ADVISE then gets the adv.L'e associated with the exit from

the procedure from the property AFTER, and operates in a manner

similar to that with BEFORE. When all of the AFTER advice has

been evaluated, ADVISE restores the HISTORY list atd returns as

HISTORY contains information relevant to the computation. It

is descrioed below on page 38.

33



the value of the procedure the value of the variable VALUE (whl:h

may have been changed during the execution of the AFTER advice)

This discussion presumes that the value of each piece of

advice in NIL. The user can affect the flow of control - from

advice to procedure to advice - by returning a non-NIL value fr

a piece of advice. If the value is a list, the first element o

this list is taken as the value f the procedure, and the rest

of the advice is ignored. If tkj.I'happens BEFORE the procedure

is entered, ADVISE binds the first element of the list to VALUE

on the HISTORY list, gets the AFTER advice, and proceeds from

there. If it happens AFTER evaluating the procedure, the first

element of the list.is taken as the value of the procedure and

returned immediately. In this way, the user can indicate that

the original procedure is to be bypassed entirely.

If the value of a piece of advice is an atom other than NIL,

it is interpreted by ADVISE as a GO instruction. ADVISE treats

the Value as a label, and searches for the label in the list of

advice, and continues with the evaluation of advice from that

point. For example, the user caq abandon evaluation of advice

without bypassing the original procedure by returning BOTTOM as

the value of a piece of BEFORE advice. (TOP and BOTTOM are labels

interpreted specially by ADVISE.)

Since ADVICE is a variable made available by ADVISE, the

execution of any piece of advice can also modify the advice list.

For example, tLe advice (PROG2 (SETQ ADVICE NIL) NIL) will produce

the same effect as the advice (QUOTE BOTTOM), i.e., cause the

rest of the advice to be ignored. Similarly the user could in-

terpret GO instructions himself by searching for labels and

34



modifying ADVICI accordingly.

With the discussion of one more feature, the description of

the operation o ADVISE will be complete. This is the provision

for modifying classes of procedures. This is done by referring

to the property list of the atom ALL, under the properties BEFORE

and AFTER as di cussed above, before getting the advice specific

to this procedu e.. Since arbitrary LISP functions can appear on

these properties, it is clear that one can specify advice for any

recursive set o functions. For example, to determine whether

or not the procedure in question has called itself more than

twice, one need merely search the HISTORY list.

The flow chart in fig. I illustrates the operation of

ADVISE.

Advising

Advising a function consists of storing a piece of advice

on the property list of the function under the appropriate prop-

erty. If this is the first time the function has been advised,

it is also necessary to replace the function oefinition with a

call to ADVISE.; Both of these operations may be performed by

calling the function provided or this purpose: SYSTEMI.

SYSTEMI is'a function of three arguments: NAME, the name of

the function to be advised, ADVICE, the piece of advice, and

WHERE, the place (property) it is to be stored. SYSTEMl appends

ADVICE to the lLst of advice (if any) that appears under the

property WHERE. If this is the first time NA4E has been advised -

as indicated bythe fact that the property ADVISED does not

appear on NAME's property - SYSTEM! also replaces the definition

35

32



zc

0i -i

~L~WC

'J 
>:s

~ ~-&- ~; -a--,~jmma.C

36



of NAME by a call to ADVISE. If NAME is not compiled, SYSTEMI

can get the names of its arguments from its aefinition (which is

also on ita property list). If NAME is compiled, SYSTEMI re-

quests the names of its arguments from the user. SYSTEM1 then

redefines NAME, but saves ita old definition as the definition

of a new function, whose name is placed under the property

REALNAME. SYSTEMi also puts the property ADVISED with value *T*

on NAME's property list to indicate that NAME is ready for

advising.

Thus if FOO has the cefinition (LAMBDA (X Y) a ), and the

user calls SYSTEMI with NAME = FOO, ADVICE = 9, WHERE = BEFORE,

the property list of FOO after SYSTEMI has been executed is:

EXPR (LMIB.A (X Y) (ADVISE (QUOTE FOO) 0 (QUOTE (A Y))

(LIST X Y)))

BEFORE

ADVISED *T*

REALNAME OLDFOO

and the property list of OLDFOO:

EXPR (LAMBDA IX Y) a)

If the user wishes to perform other operation with advice,

for example, placing the advice at the beginning o the advice

list under WHERE, instead of appending it at the end, it is a

simple matter to define a function to do this. (In PILOT, the

function SYSTEM3 performs this task.) Similarly, by calling

EDIT he can specify arbitrary manipulations of advice.

No provision is made specifically for advising procedures

that are not LISP functions, even when they satisfy the one

entey, one exit requirement. Whereas the definition of a function

37

X. M"MWIi



can always be found on its property list, locating an arbitrary

procedure must be done by prescribing both the name of the

function in which it appears and some indication of where in its

definition it is. However, it is easy to write a function which

uses the editor to locate an arbitrary procedure inside a functior

and replace the procedure with a call to ADVISE. A similar

function already exists for locatinO and defining as a new functic

an arbitrary piece of advice, so tha+ one may subsequently pre-

scribe advice on it. This is described under the NAME feature

in appendix 2 (page 174).

HISTORY

The HISTORY list is a globally available variable which

contains information regarding computation in progress. HISTORY

is maintained by the function ADVISE and consequently only

functions that have been advised will have their passage recorded

on it. The presence of IiISTORY means that user programs, rr user

advice (which is really the same thing), can "look back" and see

"what is happening above." This is valuable for avoiding looping,

and in making decisions about allocation of resources.

HISTORY has the form of an Alist; that i", it is a list of

dotted pairs which represent variable bindings. Thus, it can

be used to evaluate a variable, or it can be searched directly

by the user's program.

The individual function calls are clearly segmented on

HISTORY. This is done by having each call prefaced by an appear-

ance of a special variuble named *FN*, followed oy a binding

for the name of the function. After the name of the function,

the arguments of the function are strung out, eventually followed

38

R Wo"W- .....



by the next bindi.,q for the variable *FN*. Thus, the segmcnt of

HISTORY correbponding to the function FOO, with arguments X and Y,

looks like:

..... (*FN* . ?) (FOO . 7) (X . ) (Y . 7) (*FN* . ?) ....

In this segment, the value of *FN* is a pointer to the next

entry on the HISTORY list, i.e., the list beginning with (OO * 7).

The value of FOO itself is a dotted pair consisting of a pointer

to the next entry on the HISTORY list, i.e., (X . ?) ... , and a

pointer to the next (earlier) function call, i.e., (*FN .

The value of X and Y are, of course, whatever their value is.

The structure of the FOO segment of the HISTORY 1.st thus

looks like:

FIG. 2 STRUCTURE OF HISTORY

Because of this structure, ,ne can immediately locate the

function called just before FOO - by evaluating (CAADDR FCOJ.

Similarly, one can locate the last call ta the function FIE that

occurred before FOO waa untered by evaluating FIE against the

* CUR of the value of TOO is the HISTORY list beginning with

the last function call. The second palr in this list, C(ADR,
corresponds to the binding of the function name. CAR of this
pair is the name itself. Hence CAADDR.

39



HISTORY list before FOO, i.e., (EVAL (QUOTE FIE) (CDR FOO)), etc

The HIbTORY list can be used to create new variables. In

fact, ADVISE does this each time a function is evaluated when it

creates the variable VALUE and binds it to the value of the

function. This dotted pair, (VALUE . value), is inserted betweei

the binding of *FN* and the binding of the function name. Thus,

later functions can determine whether this function is in the

BEFORE or AFTER phase, and if AFTER, what the value of the

function was.

The User-PILOT Interface

If we consider the entire system consisting of the user,

PILOT, and the user's programs as one program, then it should

be possible to modify the interfaces between the user and PILOT,

and PILOT and the user's program with the same techniques one

uses to modify the interfaces between procedures inside of the

user's programs. This section describes modifications of this

type that have been carried out in the current version of PILOT.

The iser-PILOT-program configuration can be illustrated by

the following diagram:

USER USER'SPIO PROGRAMS

FIG. 3 USER-PILOT !NTERFACE

* Since HISTORY records only computations in proress, these
bindings last only until the return from the function. Thus
VALUE has a binding only during the time that AFTER advice is
being evaluated.

40

q.!Jj~



In this diagram, the user, Q requests PILOT to perform

an operation, such as advising a user function. PILOT performs

this operation on the user's program, Q, and acknowledges com-

pletion of the request, (. When the user's programs are ex-

ecuted, they may interact with PILOT, at and either

through the medium cf the function ADVISE, or by specifically

calling for services provided by PILOT, such as BREAX or FLIP.

It is important to obscrve that if the user utilizes PILOT

in writing and debugging his programs, as well as in modifying

them, i.e., if all of his communication with the machine is

under PILOT's auspices and go through interface Q, then there

is certain amount of tradeoff between efforts at improving inter-

face , and those concentrated on interfaces ( and (.

For example, we can relax the conventions imposed on commun-

ication between the user's programs and PILOT, so that when writ-

ing his programs, the user need not be concerned about the de-

tails of the interaction at Q. Alternatively, we can impose

very stringent requirements on this interaction, but still relieve

the usor of the burden of conforming to these conventions by

transforming his requests into a form which adheres to these

conventions at interface D" The only important features of

the process are the two enapoints: relaxed and flexible inputs

by the user, and, ultimately, instructions recognized by the

machine, i.e., LISP computations. The choice of where along the

way the interpretations and transformations take place is

arbitrary except for questions of efficiency.

What has been done in the current PILOT system is to im-

plement a collection of powerful text-manipulating functions

41



within LISP in the form of FLIP, format list processing lang-

[48J
uage. The presence of FLIP makes it easy to introduce, at

interface G a translation scheme that transforms the user's

requests into calls to appropriate LISP functions. This is be-

cause FLIP is sufficiently sophisticated to allow a single rule

to specify many variations on a particular transformation. This

is a necessity for constructing the many-one mapping required .

for flexible input. A less sophisticated language would either

restrict the user excessively or else force him to specify so

many different transformations as to be impractical.

In effect, by using FLIP, the user can devise his own con-

ventions and rules, essentially develop his own language, for

communicating with PILOT. The interpretation of this source

language in terms of LISP functions provide the semantics of the

language, which can be expanded by defining new LISP functions

as needed, such as SYSTEM3. These correspond to the operations

PILOT performs at interface ®. The syntax of the language is

also controlled by the user and is therefore easily expanded and

mooified to suit the user's own ideas as to what is intuitive anu

natural. (The particular conventions and translation scheme I

have adopted for working with PILOT are described in the

Appendix 2.)

FLIP is also available to the user for more conventional

tasks. A surprising number of the operations performed by

programs fall under the heading of pattern-driven data manipu-

lation. The availability of FLIP considerably simplifies the

problem of specifying these operations. The user does not have

* It is the presence of FLIP that makes possible the sophisticated
editing available in the PILOT system.

42



,'to program each operation anew, nor is he faced with the problem

of devising a scheme which will translate and/or interpret these

operations at interface (. All of this may be postponed until

i FLIP itself is called from within the user's programs. In this

case, FLIP may be thought of as improving interface , as well

as interface . Furthermore, enough attention has been devoted

to efficiency in the construction of FLIP that the most sophis-

ticated programmer need not hesitate to use it in writing his own

programs.

Although most of the effort at modifying the user-PILOT

,interface has been directed at interface Q, the user may also

wish to improve interface ' The appendix describes some mod-

ifications I have carried out with advice that affect this inter-

face, especially with regards to the procedure followed when an

error occurs somewhere between the user's initial request and

the successful completion of the indicated operation at /.

43

"F9V VW M



CHAPTER 4

FACILITIES IN THE PILOT SYSTEM

theThis chapter describes three of the facilities provided for
the user by the PILOT system. Central to these is the language
FLIP which is used by the system to process the user's requests,
as well as being available to the user for a variety of tasks.
FLIP is integral to EDIT, a collection of fairly sophisticated
editing routines that may be readily expanded by means of advice.
BREAK and BREAKPROG provide facilities for arresting the flow
of computation at a procedural interface so that the user can
perform computations, perhaps make modifications in the system,
and then either continue with the computation or specify some
alternate path.

I. FLIP

FLIP incorporates a notation and a programming language for

expressing, from within the LISP system, string transformations

such as those performed in COMIT or SNOBOL. These transforma-

tions may be exemplified by the following instructions for a

transformation: find in this string the substring consisting of

the three elements immediately preceding the first occurrence

of an a, and find the element just after the occurrence of a

b which follows this a; if such elements exist, exchange the

position of the three elements and the one element, delete the

a, and replace the b by a c.

Transformations of this type are fundamental for editing,

translating, in fact for performing any opiration that is Inasic-

ally pattein-driven, i.e., specified by giving the form of the

output in terms of the form of the input. However, they are

difficult to express in the eyplicit function-oriented nature

45



of LISP, although each could be individually programmed. -A

notation for expressing such transformations is the basis for

a number of programming languages that exist today, such as
(511 1151 (91

COMIT, SNOBOL, and AXLE. Each provides a formal

method for selecting substrings from a string, and then indica-

ting the structure of the transformed string.

These formalisms make it easy to write rules which perform

string transformations such as rearrangement, deletion, insertion,

and selection of elements from contents. However, it is cum-

bersome to express in these languages some of the operations

which are expressed quite easily in LIS?. Some of the latter

operations depend very strongly on the fact that LISP can have

sublists within lists to unlimited depth, whereas COMIT has

lists only to depth 3 and SNOBOL and AXLE deal only with linear

strings.

An obvious solution to this notational dlifficulty is to

provide both types of language capability, function-directed

and format-directed list processing notation, within the same

programming system. These two capabilities are provided in

PILOT by embedding FLIP 17,49] in the LISP 1.5 programming

system.

FLIP Transformations

A transformation is specified in FLIP by providing a pattern,

which must match the structure to be transformed, and a format,

*The implementation of FLIP in LISP 1.5 is based upon but is a
considerable generalizaticn over, programs and writings of
Bobrow.15,6j in adaition, it has been influenced by features of
the string processing languages described above, as well as by
those of CONVERT1 19 another string processing language embedded
in LISP.

46

SII l V u r



which specifies how to construct a new structure according to

the segmentation, or parsing, specified by the pattern. These

patterns and formats/are greatly generalized versions of the

left-half and right-half rules of COMIT and SNOBOL. For example,

elementary patterns and formats can be variable names, results

of computations, disjunctive sets, or repeating subpatterns;

predicates can be associated with elementary patterns which

check relationships among separated elements of the match; it is

no longer necessary to restrict the operations to linear strings

since elementary patterns can themselves match structures.

Furthermore, it is relatively easy to expand the semantics of

FLIP, adding new types of patterns and formats, by defining

appropriate LISP functions.

Since FLIP is embedded within LISP, it does not have its

own control mechanisms. In fact, several different useful ex-

ecutive programs have been written in LISP to facilitate using

sets of rules. Some of these do the following:

1. Repeat use of each rule until it fails, and then go cn

to the next.

2. Every time a rule is successful go back to the top of

the set of rules. On failure go to the next rule.

3. On a successful match, go to a specified labelled rule

(similar to COMIT).

(The latter algorithm is embodied in the LISP function

TRANSFORM, whi:h is used in the translating scheme as well as

in the editor.) Since executive programs can easily be changed

or written anew for each applications, the flow of control be-

tween rules is obviously not an important factor in the design

of FLIP.

47



Notation in FLIP

Let us return to the transformation described earlier: find

in this string the substring consisting of the three elements

immediately preceding the first occurrence of an a, and find the

element just after the occurrence of a b which follows this a;

if such elements exist, exchange the position of the three ele-

ments and the one element, delete the a, and replace the b by a c.

In COMIT, this operation is expressea by the following rule:

$+ $3 + a + $ + h + $1 + $ + 6 + 4 + c + 2 + 7

In the COMIT notation, the "$" matches anything, the $n

where n is a number, matches a segment of length n, and x

matches x, i.e., a segment of length 1 consisting of the single

item x. The numbers in the right hand side of the rule refer

to the corresponding elements in the left hand side of the rule,

e.g., .5" refers to the single element "b", "2" refers to the

three elements preceding "a."

The external notati of FLIP is in fact quite similar to

that of COMIT. Giving FI P the pattern ($ $3 A $ B $1 $) and

the format (1 6 4 C 2 7) ill cause the transformation described

...... ....... .. .. aba.e to be performed, i. ., (FLIP X (QUOTE ($ $3 A $ B $1 $))

(QUOTE (1 6 4 C 2 7))) specifies a LISP computation which trans-

forms the variable x according to this rule.

However, since FLIP may also be used on nonlinear strings

and has in it many features which do not have counterparts in

COMIT, e.g., une of predicates, repeating subpatterns, etc., it

has been necessary to expand the COMIT notation considerably.

For example, to cancel out the common factor in LISP expressions

48

-'N -



such as (QUOTIENT X (TIMES A B X Y)), one uses the pattern

(QUOTIENT $1 (TIMES $ (/T 2) $)) and the format (TIMES (/T 3 2)

(/T 3 4)). The "/T" indicates that the numbering should begin

at the "top" of the parsing, i.e., (/T 3 2) is the second element,

in the third element of the parsing, or (A B), and (/T 2) is the

second element, or X. (Alternatively, one can specify that the

* numbering is to begin at the current level, or up a certain

number of levels.) To find a string of three elements which are

immediately followed by their mirror image, one u s the pattern

($ $3 $3 / (EQUAL (= REVERSE 2)) $), where the predicate (EQUAL

(= REVERSE 2)), associated with the second "$3", signifies that

the result of applying the LISP function REVERSE to the element

, corresponding to the first $3, indicated by. "2", must be equal,

to this element in order for the pattern to match.

However, it is not the intent of this discussion to describe

the operation of FLIP in detail, but instead to indicate the

ways in which it can be useful, and the problems to which it is

applicable. For this purpose, the manner in which certain oper-

ations are expressed is not at all important, esoecially since

the current notation is arbitrary and ad hoc. (A' arge part

of the awkwardness of this notation is due to the clumsy way in

which reading and printing occur in the present LISP 1.5 system,

and to the dearth of available symbols.) In any event, since

utilization of FLIP involves a translation from an external lang-

uage to a more efficient form for internal use, it would be

possible with more sophisticated translators to provide whatever

notation the user wishes. Thus the important thing about FLIP

is the semantic features made available by it. The examples on

the next pages are designed to illustrate some of these.

49

.r-



Applications of FLIP

Translation. FLIP was originally conceived and implemented

for a specific purpose: to proviue in PILOT a capability for

transforming user requests into LISP computations. The details

of this translating scheme are described in appendix 2. In

this example, I shall motivate and construct in greater detail

one of these transformation rules.

Prefix notation plays an important part of the LISP formal-

ism. Relations are expressed with the name of the relation

first, e.g., (X IS A MEMBER OF Y) is (MEMBER X Y), ,X IS LESS

THAN Y) is (LESSP X Y). This is convenient because it puts the

name of the ope-ation in a canonical position, and so avoids

the problem of identifying that member is the key bdfd in (X IS

A MEMBER OF Y). However, since Ez.glish is basically an infix

notational language, the user must continually perform mental

transformations when programming in LISP. The translation scheme

implemented in PILOT is designed to lessen the user's burden.

This translator is basically a sequence of FLIP rules

which perform transformations on the input. Thus including a

r 'le such as:

(-- $1 IS A MEMBER OF $1 --) C-- (MEMBER 2 -2) --))

will allow the user to write

(...X IS A MEMBER OF Y ... )

50

.- - - . .- I -_ o



for

(... (MEMBER X Y)....

Similarly, ((-- $1 IS LESS THAN $1 --) (-- (LESSP 2 -2) .--)),

and ((-- $1 IS GREATER THAN $1 --) (-- (GRLATERP 2 -2) --)), etc.

However, as we introduce further "IS RULES," the translation

process will be slowed down considerably, because of the increas-

ing num.ber of attempted matches. In addition, the question of

space may become crucial. We would like to have a single rule

handle all of the "ISa transformations. This would have the'

added advantage that we could also transform (X IS NOT A MEMBER

OF Y) into (NULL (MEMBER X Y)) with the same rule.

The way to 'construct such a rule is to use the disjunctive

"EITHER" pattern, with a variable pattern name. For example,

if we store the patterns for the IS transformations on the

property list of the atom IS under the property PATTERNS, then

(-- $1 IS (EITHER (- GtT IS PATTERNS)) -- ) will match if the

'input list is of the form of one of the IS PATTERNS. The

format (-- ((EITHER (- GET IS FORMATS))) --) will then perform

the desired transformation, selecting the format corresponding

to this maLch. To incorporate the NOT feature, we write instead

* A wora about notation:

I.' The above rule translates the same as
(($ $1' IS A MEMBER OF ;] $) (1 (MEMBER 2 -2) -1)).
r -- means either "$" or "1" or "-I" or even "NIL," Atpending on
the context. It represents a DWIM statement - "DO WHAT I MEAN."

2. Negative numbers, such as -2, -1, serve the same function
as positive numbers, they refe; to elements in the parsing.
However, with negative numbers, the numbering starts from the
j hand side and counts backward. Thus in tl,- above,

EMBER 2 -2) is the same as(M-EMBER 2 7) and also (MEIBER -7 7).

51

, , i l I . ' I ."II



(-- $1 IS (EITHER (NOT) -- ) (EITHER (= GET IS PATTERNS)) -- )

and

(-- ((EITHER (NULL (MTTHER (/T -2) (='GET IS FORMATS)))

((EITHER (/T -2) (= GET IS FORMATS))) )) -- )

With this rule, it is necessary to specify by (/T -2) which

of the two OEITHER's" we are referring to in the match (FLIP will
select the first one if none is specified).

Now, if we put on IS PATTERNS: (MEMBER OF $1), GREATER THAN

$1), (LESS THAN $1), even (ATOMIC) and (A NUMBER): and on IS

FORMATS: (MEMBER 2 (/T -2 -1)), (GREATERP 2 (/T -2 -1)), (LESSP 2
(/T -2 -1)), (ATOM 2), (NUMBERP 2), etc., the appropriate trans-

formations will be performed. Furthermore, it is a simple matter
to write another rule which automatically does this, i.e., we

can say (X IS GREATER THAN Y MEANS GREATERP) and (GREATER THAN $I)

will be put on IS PATTERNS and (GREATERP 2 (/T -2 -1)) on IS

FORMATS; if we say (X IS A NUMBER MEANS NUMBERP), then (A NUMBER)
will go on IS PATTERNS and (NUMBERP 2) on IS FORMATS, etc.

Output

Frequently a programmer will content himself with relatively
sterile output because the extra labor involved in programming
fancier output does not justify the returns. FLIP makes it easy

for programs to communicate with the user in text, as opposed to

list structure.

Suppose a program deals with data such as (AT PENCIL Y),
(NIL AT PENCIL COUNTY), and (((AT PENCIL DESK) (AT DESK HOME))

AT PENCIL COUNTY). The first list is the representation of the

52



question: "Is the pencil at any y?" The second that of the state-

ment, "The pencil is at the county" and the third, "If the pen-

cil is at the desk and the desk is at the home, the pencil is at
*

the county." We would like to have the program output this in-

formation this latter way instead of the way it is internally

represented.

To do this, we proceed as follows:

First we define a function PHRASE which transforms (AT

PENCIL COUNTY) into (THE PENCIL IS AT THI COUNTY). The defini-

tion of this function, using FLIP, is:

(LAMBDA (X) (FLInQ X

($1 (EITHER ($1 / (VARIABLE)) ($1)) (EITHER ($1 / (VARIABLE))

($1)) )

((EITHER (ANY) (THE)) 2 IS 1 (EITHER 3 (ANY) (THE)) 3) ))

FLIPQ is the same as FLIP, except we don't have to quote the

latter two arguments. VARIABLE is a function which is true if

its argument is a variable, false otherwise. Note that PHRASE

applied to (AT PENCIL Y) is (THE P.NCIL IS AT ANY Y).

Next we define a function WUESTION which transforms (AT

PENCIL COUNTY) into (IS THE PENCIL AT THE COUNTY). The definition

of this function is:

jLAMBDA (X) (FLIPQ X

($1 (EITHER ($1 / (VARIABLE)) ($i)) (EITHER ($1 / (VARIABLE))

($1})

(IS (EITHER (ANY) (THE)) 2 1 (EITHER 3 (ANV) (THE)) 3) ))

* This example is from Chapter 5, Experiments with a Question-
Answering System.

53



Using these two functions, we'can define OUTPUT to handle

the three different data types:

(LAMBDA (X) (FLIPQ X

(EITHER (NIL -- 1 151 / (ATOM) -- )

.? ($1 (EITHER 15($ 1) --

(EITHER

4((' au PHRASE 2)) (a PERIOD)

(a* 1" QUESTION (/T 1))) (- QMARK))

(IF ( -(( P -: . ( CAR (iC 1 1))))

(EITHER (AND '* (" PHRASE 1))) -- ) (- COMMA)

(** (" PHRASE 2)) 4- PERIOD) } } ))

In this definiticn, ***" denotes that the reqult of the

LISP computation is not to be treated as a single element and

inserted, but to be treated as a list and appended, so that the

resulting structure will be a linear list. The (/T 1) in the

call to QUESTION gives it as input what matched the top level

EITHER, or the entire list X. FinallS, the (/C 1 1) denotes

the first element in tte first element of the current Structure.

In this case, it is the same as writing (/T 1 1 1), or (a CAR 1).

Searching and Sorting

A surprising number of the more common tasks performed by

programs fall under the heading of pattern-driven data manipula-

tion. Thus, they could be written in FLIP. ror example, when

we search a list for a particular item or group of items, as

specified by some relationship, we are performing the same oper-

ation as that performed by the function MATCH in FLIP. Even

such mundane operations as sorting a list can be expressed simply

in the FLIP notation.

54



iV S

f Suppose we wish to define a function which will take tae list

(X X Y W X Z Y) and produce as output the list ((3 X) (2 Y) 1 W)

(1 Z)). The following function, using TRANSFORM, (see page 47),

will do thist

(LAI4BD, (X) (TRANSFORM X (QUOTE

LOOP ((-- $1 / (ATOM) (REPEAT $ (/T 2)) -- 1

1-- 4 (REPEAT N 2) (- (CAR N)) 2)) LOOP) ))11

In this rule, N is the index of repetition. When the REPEAT

format completes operation, CAR of N ic the number of times it

repeated.

If instead we wanted as output (X X X Y Y W Z), we would add

to the above list of rules for TRANSFORM:

((REPEAT $1) (REPEAT (- CAR 1) C- CADR 1M)

This rule will transform (3 X; (2 Y) (1 W) (1 Z)) into

(M X X Y Y W Z).
* *

1. EDIT

Programmers must have a way of editing their programs.

this is a simple consequence of the fact that prog.:ammers make

listakes. Unfortunately, however, editing facilities are often

wrimitive; the limiting factor in debugging programs may be the

Lnteraction time with a keypunch.

One approach to finessing the duplicat6 button on the key

unch is to construct a context editor for the source material,

55



usually pap-r tape or card decks. This is the approach of Tape

Editor1421 and ED.11ll Here the user moves an imaginary pointer

through his program listing using context search, e.g., locate

the character string 'CONS (CAAR X," and performs insertions,

deletions, and replacements. The editing program makes the

corresponding ch anges in the source material and issues the user

a fresh version at the end of the editing session.

For LISP programmers, the above procedure necessitates

leaving the LISP system and the original program. This may be

undesirable if the user is in the midst of a debugging sequence,.

especially if returning to the LISP system involves a lengthy

loading process. Another approach to the problem of editing,

therefore, is to provide some form of editing facili j within

the LISP programming system. This is the approach of Martin1
28 1

(83and Bobrow. Here the user has the added advantage that he

can edit list structure, instead of text, although this may make

it difficult to correct a simple parenthesis error. The opera-

tions corresponding to moving the pointer allow the user to

refer to pi-tces of list structure. Similarly, insertion, de-
4.o

letion, and replacement commands specify changes in the structure.

At the end of the session, the editor produces a now version of

the list structure. The programmer can then proceed with his

debugging immediately.

V From the standpoint of the LISP user, this latter approach

is nuperior. However, for efficient LISP editing, the properties

of a structure editor and a text editor are both required. The

user should be able to manipulate individual parentheses as

easily as pieces of list structure.

56

f..



Another desirable feature of an editing program is a language

for expressing editing operations. The absence of a language

:tends to precluue conditional operations. The user cannot specify

operations involving aecisions, even simple ones, serh as find an

bX* that immediately follows a "Y' - except by searching for a

*Y" and examining the next element himself. A language is also

necessary to enable the user to define new operations, without

reprogramming the editor.

Using FLIP for Editing

The presence of FLIP provides a language for describing

editing operations. In fact, all that is necessary to construct

an editor is to write an executive program which accepts requests

from the user and calls FLIP. The insertions, deletions, and

replacements of eoitinq are specified by FLIP patterns and for-

mats. Furthermore, since FLIP rules are themselves list structure,

it is easy to modify them using other FLIP rules - e.g., by giving

advice. In this way, a sophisticated editor can be built around

the FLIP language with very little additional effort.

Such an editor has been included in the PILOT system. The

following discussion presents its salient features. 148]

Example

To give the general flavor of editing using FLIP, suppose

the definition of the function FOO is

[441
* TECO, tape editor and corrector,is an excellent examp]e
of the advantages of an editor with a language.

57



(LAMBDA (X) (PROG NIL (COND

((EQ (CAR X) -1) (RETURN NIL))

- (SETO Y (PLUS (Y CAR X)))

(SETO X (CDR X))

(GO START?))

Let us add Y to the argument list, and label the ONJ state-

ment START. -

edit (foo expr nil)
(match [-x- find the left-jItost xi
(form 1 2 *3) (follow it Dy y)
(match -- il -)(the first NIL)
(form 1 2 start 3)
stop
FOO (value of EDIT]

We could perform both changes in a single match and construct

if we desired. Also, we could check our intermediate results by

examining the' output of the matches.

edit (foo expr nil)
(flip (.x -- nil *)(1 2 y 3 4 start 5))
(match -- prog -- cond )

whtis 1 in last, maetch?)

NIL START ( t:his is 3]1
stop

FOO (the value Of EOflTJ

Flattening Lists and Balancing Parentheses

For all intents and purposes, in the above example, we were

editing a string of atoms. This effect is achieved by "flattening*

all S-expressions that are to be edited into a single list of

atoms, substituting the special atoms V' for left parentheses,

*"form* is used instead of *cons" for *construct" because the
word *conso would be confused with the LISP function CONS.

V_



1* for right parentheses, and P* for dot. For example, ((A D)

(C . 0)) flattens to (L* L A P* B R* L C P* 0 R* R*). Since

*, R, and P* are atoms the same as X, Y, and NIL, we can insert

and delece them as well as any uther. While inside of the editor,

fe can even manipulate *partial" lists such as *(LAtIBDA (X Y) (",

represented as (L* Lk-XVA L* X Y R* L*). The only restriction

is that the list must "unflatten* correctly when we wish to

ieave the editor.

To restore the properties of list structure to the editor,

L.e., to allow us to refer to pieces of list structure as well

is strings of atoms, we now expand the semantics of FLIP by adding

a new elementary pattern, UPN. This elementary pattern signals

FLIP to find the nth matching pair of parentheses, that is, to

)o UP n pairs of parentheses starting from the current position.

In effect, that the UPN pattern says, for n-2, is "I didn't

really want to match with .. ) but with the list containing the

list containing G..). However, it was easier to find this list

by first locating (..), and then backing up two sets of paren-

theses." Thus in the example on the previous page, we could

find the structure ((EQ (CAR X) -1) (RETURN NIL)) by matching

with (-- ((EQ (CAR X) -1) (RETURN NIL)) --) (FLIP will auto-

*atically flatten the input pattern), or by matching with

(-- EQ UP2 --), or (-- CAR UP3 -- ),or (-- RETURN UP2--).

the UPN pattern would then match with the structure ((EQ (CAR X)

-I) (RETURN NIL)), which could be transformed as desired.

59

- - .i.i .|



Adding New operations

Suppose we want to

INSERT (SETQ X 1) (SETQ Y NIL) AFTER CAR -- CDR UP2.

i.e., after the UP2. We match with (-CAR~- CDR UP? -) azji

construct with (1 2 3 4 5 (SETQ X 1) (SETQ Y NIL) -1).--.To

REPLACE CONS UP2 WITH (LIST Z),

we match with (-CONS UP? - and construct with

(1 2 (LIST Z) -1).

Ir fact, to insert a after J8 , match with (-/-)and con-

struct with (1 23 .. n -2 a -1), where n is the length of /
To insert a before /3*match with A- 3-)~nd construct with
(U 2 3 ... n a -2 -1). To replace 8 with a ,match with (-/ -

and construct with (1 2 3 .. n a-1), etc.

This suggests that it should be possible to give the editor

requests such as (INSLRT (SETQ X 1) (SETQ Y NIL) AFTER 'AR -

CDR UP-2), and (REPL.ACE CONS UP2 WITH (LIST Z)), by defining the

operations INSERT AFTER, INSERT BEFORE, REPLACE WITH,-etc----

This is in fact easy to accomplish by first transforming

the request to EDIT according to a set of EDIT RULES. Adding

new FLIP rules to this list allows the user to define new opera-

tions. For example, to define

60

- -,--~-.,--~:wm.



(REPLACE ... WITH .. )we add the rule

((REPLACE s WITH $) (FLIP (S2 $) ((REPEAT (=.LENGTH 2)
/3

((CAR N))) 4 (QUOTE -l)))).

This transforms (REPLACE CONS UP2 WITH (LIST M) into

(FLIP ($ CONS UP2 $) (l 2 (LIST Z) -1)), which is then recognized

ts a request for FLIP. New operations can even be defined in

terms of old ones, e.g., ((DELETE $) (REPLACE 2 WITH)) allows

the user to specify (DELETE CONS UP2). With a little practice,

the user can define fairly complicated operations such as

(CHAN4GE ALL a TOfl ), (SUBEXP 0 BEFORE /~)(which 'allows one

to move structure from one place to another) and (WHAT YS a )

for interrogating the current status of the edited structure,

tn this 4ay, the user can build up his cvii vocathjiji 141

jage for editing, always returning to the' Pi, i. L11 operation

for complicated 3nd/or special purpose operat.ions.

tXI. BREAK AND BREAKPROG

In order to edit (or advise) an incorrect pro%-eduvep we

ust first know what procedure is at fault, and the precise

i4tuLO of the problem. Finding t'iis out can be a very difficult

*sk. If the error is such that the program does not produce

iny meaningful output at all, there may be no course of action

Left but to examine the action of a large number of procedures

In detail. Evon when we have somie idea of where the trouble

spot may lie, and in inkling of what it is, we must still be

ible to examine closely the operation of. a procedure. We want

:o find out what changes it makes, if any, in its essential

61

WIN



4

variables. Basically, what we want to do is arrest the flow of

computation at the entry and exit to a procedure, perform various

computations, and then either continue with the normal flow of

control, or indicate alternate routing.

There is great similarity between this operation and that

of advising. In fact, the two are identical, except that with

advi.sing, the computations are prespecified on the property list

of the procedure, whereas with this operation, which I call

breaking, they are entered through the keyboard at the time of

the break. This of course is the essential point of breaking.

Since the user does not know what the trouble is, he cannot

fully anticipate the questions (computations) he will want to

ask, prior to the time of the break. In general, each question

will depend on the "answer" he receives to the previous one.

[481
Breaking is implemented in PILOT by a function BREAK.

BREAK1 takes as input the definition oi. a procedure, and allows

the user to execute LISP computations before and after evaluating

this procedure. These computations are entered from the key-

board, and, after execution, their value is printed.

BREAKI plays a role in breaking similar to that of ADVISE

in advising. However, since efficiency is not important in

BREAK1, the various advising conventions concerning exit from

a procedure have been replaced with four special commands: QUIT,

STOP, RETURN, AND EVAL, for which BREAKl makes a special check.

* In general, whenever input or output is required, efficiency
of computation is not important, because the computation time
is so small compared with the time required for the input and
output processes.

62



QUIT, STOP, AND RETURN specify exits from the entire breaking

operation: QUIT induces a LISP error; STOP is the normal (un-

broken) return from the procedurej and RETURN specifies a return

with some other value, i.e., via another computation. EVAL

is used when the user wishes to evaluate the procedure, without

exiting from the break. This corresponds to going from the

BEFORE to AlTER phase in advising, except ,that with breaki

this can be done more than once. For example, after an EVAtL

command, the user can check the value of the procedure, make

some changes, and EVAL again.

Breaking a procedure involves replacing its definition with

a call to BREAKl. Again, note the similarity to advising. There

are two functions available for this purpose. BREAK is used

when the procedure is a LISP function. BREAXPROG is used when

the procedure occurs inside of a LISP function. BREAK gets the

function definition from the property list. BREAXPROG calls

EDIT to locate the procedure in question and to make the appro-

priate changes. Since one of the arguments of BrEAK1 is a

breaking condition, the user can specify that a break is to be

* conditional upon the result of some computation, and thereby

postpone examination of the procedure until a crucial point in

the calculation occurs.

63



CHAPTER 5

EXPERIMENTS WITH A QUESTION-ANSWERING SYSTEM

Two detailed examples are presented in this chapter and the
next. They illustrate the use of the PILOT system. An attempt
has been made to give the reader the flavor of an actual session
at the console. The complete user-PILOT dialo~ue is included,
along with anecdotal comments explaining what is happening.

Preface

Because it is impossible to allow to each reader himself

interaction with the system, I have tried, in these chapters,

to give its flavor by going through an example; I have attempted

to impart the idea behind each interaction wiLhout dwelling on

;the details. Appendix 2, Using PILOT, delves more deeply into

the conventions anu operation of the system.

Experiments with a Deductive Question-Answering System

In 1964, Fischer Black programmed in LISP a Deauctive

Question-Answering System. This system- is similar to the

.Advice Taker proposed by McCarthy. and solves McCarthy's

iTairport problem," among others.

In the airport problem, the program is supplied with certain

facts, at (I,desk) (which is McCarthy's formalization of "I am

at the ueskm), at(.esk,home),at(car,home),at(home,county).

at(airport,county),walkable(home),drivable(county), along with

general and specific rules relating those facts, such as the

transistivity of the "at" relationshipt at(x,y at(yz) at(x,z).

65



It is then asked to solve the "problcm" posed by the premise

"want(at,(I,airport))", in other words to prcduce a deductive

chain which terminates with "at(I,airport)."

The operation of Black's systeq can better be explained with

a simpler corpus. Let us assume the program is given:

in(pencil,cesk),

in(desk,home),

in(home,county),

in (x,y)-at (x,y),

in(x,y) ,at(y,z).-at (x,z).

When asked the question "Is my pencil at the county," i.e.,

at(pencil,county), the program looks for a statoernt whose con-

sequent matches the question, and finds two: in(pencil,county)-.

at(pencil,county), and in(pencily),at(ycounty)-at(pencilcounty).

It then considers as a subquestion "is my pencil in the county"

and finding no statements that match, concludes that this question

cannot be answered. It therefore considers as a subquestion,

the first antecedent in the remaining statement, namely

"in(pencil,y)," which asks "what is my pencil in?" "in(pencil,y)"

matches "in(pencil,desk)." Since this is a known fact, the

deduction is immediate, and since there are no other matches,

the answer to the question "in(pencil,y)" is "in(pencil,desk)."

The program then attempts to answer "at(desk,county)," because

then it could deduce "at(pencil,county)," etc.

One of the interesting problems of this system is that

endless deductions can result because the same question occurs

as a subquestion uf itself. For example, if the corpus were

66



A

.(pencil,desk),at(desk,home),at(home,county),at(x,y) & at(y,z)-.

i(x,z), then given the question *at(pencil,county)," the sub-

e~tion -at(pencil,y)w would keep repeating. Dr. Black dis-

isses various way, to prevent endless deduction in his thesis,

id raises various objectionsto each of them. -Unfortunately,

plementing and testing each method involved considerable re-'

.gramming. D.G. Bobrow suggested that PILOT could be used

make these modifications and that this would provide an ex-

illent test for it., In particular, since the procedures used

I this example woula not only be compiled subroutines but would

iwe been written by an entirely different person, it would

monstrate whether or not PILOT really allowed the user to

link of a procedure as a little black box with input-output

iaracteristics. Accordingly, I copied the function definitions

.) Black's system from the appendix of his thesis, and loaded

we into PILOT.

Sur.mary of the Experiment

Since the only output provided by Black's program was an

ihaustive trace of the two main functions, SOLUTION1 and

)LUTION2, the first step was to get the program to print out

i deductive chain in some readable fashion. When this was

;no, I discovered that the program was written to produce'all

ssible answers to a question. When the question contained

6 variables, d.g., at(pencil,county), this meant that the pro-

iam would continue to look for an alternative way of answering

he question even if it had already satisfactorily deduced the

nswer. This situation was readily corrected by advice.

The way the progran operates is as follows: if the question is
AT PENCIL Y), it returns a list of all the facts satisfying the
deation. If the question -s (AT PECRL COUNTY), it also returns
list of all facts satisfying the question, but in this case

here can e-only one - (AT PENCIL COUNTY). Essentially what it
oes i say "Yes, the pencil is at the county."

67



A. 5

At this point, I decided that it would be easier for me to

follow the deduction if the output were in a more readable for-

mat. Dr. Black had described the internal representations used

for questions, facts, and deductive rules. I therefore wrote

three functions, QUESTION, PHRASE, AND CLAUSE, which used FLIP,

and transformad the internal representation into English.

PHRASE would take something of the form (AT PENCIL COUNTY) and

transform it into (THE PENCIL IS AT THE COUNTY). QUESTION

produced (IS THE PENCIL AT THE COUNTY Q) from (AT PENCIL COUNTY),

(when it was designated as a questioi). CLAUSE would take an

arbitrary expression, decide whether it was a question or a

statement, and then perform the appropriate tranrformation,

e.g., (((AT PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY) become

(IF THE PENCIL IS IN ANY Y AND ANY Y IS AT THE COUNTY, THE

PENCIL IS AT THE COUNTY).

The protocol that follows gives the definition of these

functions. It shows how BREAK was useful in debugging them and

how advice was used to correct the one bug that was found.

After I had the program more or less talking to me, I

attempted'to solve tte original problem, that of endless de-

duction. The first solution was to limit the number of quescions

considered. When this limit was set at 2, the program could

not get an answer to "at(pencil,county).* Since I was going

to play with this parameter, I advised the function to allow

me to input this parameter along with the question. Giving it

a limit of 3, the program could answer "at(pencil,county)u,

although it was clear it did so inefficiently.. I also tried

the q-.jstion "at(pencil,y)." With a limit of 1, the program

got one answers at(pencil,desk). With a limit of 2, it got two

68



answers: at(pencil,home) and at(pencildesk). With a limit of

3, after much labor, all three answers, at(pencil,county),

at(pencil,Home) and at(pencil,desk) were obtained.

The last modification undertaken was to instruct the program

to look for a repeated subquestion, and if one were encountered,

to return with any answers already found to that question in-

stead of considering it anew. With this modification the program

obtained all three answers to at(pencil,y) in a very satisfactory

manner, with less than half of the effort of the previous method

(i.e., setting an arbitrary limit on the number of recursive

function calls allowed).

Protocol

Initially the only facility for monitoring the operation

of the program was the trace feature in LISP. I traced SOLUTION1

and SOLUTION2, which were the main functions. From the text of

the thesis, I knew that (AT PENCIL COUNTY) was a question, and

(NIL IN DESK HOME), (((IN PENCIL COUNTY)) AT PENCIL COUNTY)

were the way statements were representea. It thus became clear

that SOLUTION1 handled questions and SCLUTION2 took a statement

and tried to find a deduction that produced it.

solutionl ((at pencil county))

ARGUMENTS OF SOLUTIONI
(AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION2
(((IN PENCIL COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTIONI
(IN PENCIL COUNTY)

69



Ft

VALUE OF SOLUTION1
NIL

VALUE OF SOLUTION2
NIL

ARGUMENTS OF SOLUTION?
!((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)

ARGjLENTS OF SOLUTION
(IN PENCIL Y)

ARGUMENTS OF SOLUTION2
(N(L IN PENCIL DESK)

VALUE OF SOLUTION2
((IN PENCIL DESK))

VALUE OF SOLUTIONI
((IN PENCIL DESK))

ARGUMENTS OF SOLUTION2
(((AT DESK COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTIONI
(AT DESK COUNTY)

ARGUMENTS OF SGLUTION2
Ii(((IN DESK COUNTY)) AT DESK COUNTY)

;ARGUMENTS OF 9OLUTIONI
I' (IN DESK COUNTY)

'VALUE OF SOLUTION!
'NIL

VALUE OF SOLUTION2
.NIL

;ARGUMENTS OF SOLUTION2
(((IN DESK' Y) (AT Y COUNTY)) AT DESK COUNTY)

etc.

ARGUMENTS OF SOLUTION2
(((IN COUNTY Y) (AT Y COUNTY)) AT COUNTY COUNTY)
ARGUMENTS OF SOLUTIONI
(IN COUNTY V)

VALUE OF SOLUTION!
NIL

ALUE OF SOLUTION2
IL

4ALUE OF SOLUTIONI
NIL

VALUE OF SOLUTION2
NIL

70



VALUE OF SOLUTION2
NIL

VALUE OF SOLUTIONI
((AT HOME COUNTY))

ARGUMENTS OF SOLUTION2
(NIL AT DESK COUNTY)

K VALUE OF SOLUTION2
((AT DESK COUNTY)'

VALUE OF SOLUTION2
((AT DESK COUNTY))

VALUE OF SOLUTION2
((AT DESK COUNTY))

VALUE OF SOLUTION1
((AT DESK COUNTY))

ARGUMENTS OF SOLUTION2
(NIL At PENCIL COUNTY)

VALUE OF SOLUTION2
((AT PENCIL COUNTY))

VALUE OF SOLUTION2
((AT PENCIL COUNTY))

VALUE OF SOLUTION2
((AT PENCIL COUNTY))

VALUE OF SOLUTIONI

((AT PENCIL CIUNT Y))
(AT PENCIL COUNTY))

csetq (corpus corpus2)

((NIL AT PENCIL DESK) (NIL AT DESK HOME) (NIL AT HOME
COUNTY) (((AT X Y) (AT Y Z)) AT X Z))

solotioni (at pencil ccut)

ARGUMENTS OF SOLUTIONi
(AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION2
(((AT PENCIL Y) (AT V COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTIONI
(AT PENCIL Y)

ARGUM4ENTS OF SCLIJTION2
(NIL AT PENCIL DESK)

71

vi -v



VALUE OF SOLUTION2
((AT PENCIL DESK))

ARGUMENTS OF SOLUTION2
(((AT PENCIL U) (AT U Z)) AT PENCIL Z)_

ARGUMENTS OF SOLUTIONI
(AT PENCIL U)

ARGUMENTS OF SOLUTION2
(NIL AT PENCIL DESK)

.VALUE OF SOLUTION2
((AT PENLi DESK))

ARGUMENTS OF SOLUTION2
(((AT PENCIL Y) (AT Y Z)) AT PENCIL Z)

ARGUMENTS OF SOLUTIONI
(AT PENCIL Y)

ARGUMENTS OF SOLUTION2
(NIL AT PENCIL DESK)

VALUE OF SOLUTION2
((AT PENCIL UESK))

ARGUMENTS OF SOLUTION?
(((AT PENCIL U) (AT U Z)) AT PENCIL Z)

ARGUMENTS OF S

Here I used corpus2, the corpus In which looping may occur.

As can be seen from the trace, the program is in an endless

deduction.

What I plan to do is to define a new f iction, SOLVE,

which will call SOLUTION1 and initiate the deduc9.on. Each

time I enter SOLUTION1 or SOLUTION2 during the deduction, I

will save their arguments on a dummy variable - which I will

call SOLU'±I0W. if when I leave the function, its value is

NIL, I'll then remove its argument from SOLUTION. SOLUTION is

thus a first-in first-out list of arguments for SOLUTION1 and

SOLUTICN2. When I get finished, SOLUTION will have all of the

questions and statements that produced non-null values, i.e.,

those actually part of the deduction.

72

* - - -. ~ '~;!



(define solve (x) as solutioni x)
(SOLVE)

Definino SOLVE.

(tell solve before, do bind solution to nil)
SOLVE

Telling SOLVE to BIND solution to NIL. The DO means this

advice is to be executed without disrupting the normal flow of

introl - i.e., SOLUTIONI will still be entered.

(tell solutionl before, do save x on solution)
SOLUTIONI

Telling SOLUTION1 to SAVE on SOLUTION.

(translate ((either (before 1)(fter $0) ($1 MI (S$1
-- ) as (tell (either (2 1) (2 1) (1 2) ( normal)

do -)
(TRANSLATE RULES)

At this point I realize that frequently I use this sort of

advice, i.e., DO something and go on, so I add a new translation

rule to handle it. With this rule, (solution2 t save y on

solution) will become (TELL SOLUTION2 BEFORE DO SAVE Y ON SOLUTION).

(solution2 : save y on solution)
SOLUTION2

Telling SOLUTION2 to SAVE Y.

(after soluttonl if value Is null, then pop solution)
SOLUTIONI

73



After I come out of SOLUTION1, if its value is NIL, I

want to remove X from SOLUTION.

(use solutionl after for solution2 after)
(SOLUTIONI AFTER)

Similarly for SOLUTION2.

(after solve mapc solution (print x))
SOLVE

After I get done, I want to see SOLUTION.

solve ((at pencil county))
(PIL AT PENCIL COUNTY)
(NIL AT DESK COUNTY)
IN HOME Y)
((IN HOME Y) (AT Y COUNTY)) AT HOME COUNTY)

(NIL AT HOME COUNTY)
NIL IN HOME COUNTY)
IN HOME COUNTY)
((IN HOME COUNTY)) AT HOME COUNTY)
AT HOME COUNTY)
((AT HOME COUNTY)) AT DESK COUNTY)

(NIL IN DESK HOME)
IN DESK Y)
((IN DESK Y) (AT Y COUNTY)) AT DESK COUNTY)
AT DESK COUNTY)
(((AT DESK COUNTY)) AT PENCIL COUNTY)
NIL IN PENCIL DESK)
IN PENCIL Y)

(((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
(AT PENCIL COUNTY)
((AT PENCIL COUNTY))

Now I ask the question at(pencil,county) again.

The first thing I notice is that I forgot to reverse

SOLUTION and the deduction is reversed. I also notice that

after answering the question (IN HOME COUNTY) with the fact

(NIL IN HOME COUNTY), the program went nn trying to get other

answers via the statement (((IN HOME Y) (AT Y COUNTY)) AT HOME

74



COUNTY). I p~an to remedy this. In order to evaluate the

program's per ormance before and after this change, and others,

I will make ti~e program count the number of times it enters

SOLUTION1 and SOLtJTION2.

7(cha ~ge solve after
(repl ace solution with (reverse solution)))

(S EAFTER)

Reversin solution.

(solve bind number to 0)
SO LVLI

Setting up a dummy variable NUMBER and binding it to 0.

(translate (- increment 51 -)as (-(setq 3 (addl 3))-)
(TRANSLATE RULES)

Defining what INCREMENT means.

(solutloni increment number)

SOLUTIONI

Telling OLUTION1 to INCREMMN NUMBER.k

(solution2 increment number)
SOLUTION 2

Similar 4 for SLTO2

(after solve (print cons number '(function calls)))

SOLVIE

Telling SOLVE to print NUMBER.

75



solve (at pencil county))
(AT PENCIL COUNTY)
((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
IN PENCIL Y)
NIL IN PFNCIL DESK)
((AT DESK 'uUNTY)) AT PENCIL COUNTY)
AT DESK COUNTY)
((IN DESK Y) (AT Y COUNTY)) AT DESK COUNTY)
•hbESK Y)
NIL IN DESK HOME)
((AT HOME COUNTY ) AT DESK COUNTY)

AT HOME COUNTY)
((IN HOME COUNTY)) AT HOME COUNTY)
IN HOME COUNTY)
NIL IN HOME COUNTY)
NIL AT HOME. COUNTY)
((IN HOME Y) (AT Y COUNTY)) AT HOME COUNTY)t(IN HOME Y)
NIL AT DESK COUNTY)
NIL AT PERCIL COUNTY)

(30 FUNCTION CALLS)

((AT PENCIL COUNTY))

I am now ready to tell the program not to look for additional

answers to questions which do not contain any variables.

(solutlonl bind val to nil)
SOLUTIONI

I create the variable VAL and bind it to NIL. This will -

bind VAL to NIL each time SOLUTIONl is entered. Thus there will

be a value for VAL associated with each question.

(after solution2 (setq val value))
SOLUTION2

When I leave SOLUTION2, I will set VAL to Lhe value of

SOLUTION2. The particular VAL that will be set will be the

one associated with the question which created the statement

that SOLUTION2 is considering currently.

76



(tell solution2, (before number advice),
if val and (variables x) is null, then quit)S(SOLUTION2 BEFORE).s .......

Now I tell SOLUTION2, before the advice which increments

number if VAL is true, which means I already obtained one

answer to this question, and if (VARIABLES X) is NIL, which

, means that there are no variables in the question, then it,

SOLUTION2, should quit, i.e., return with NIL.

solve ((at pencil county))
AT PENCIL COUNTY)
((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
IN PENCIL Y).
NIL IN PENCIL DESK)
((AT DESK COUNTY)) AT PENCIL COUNTY)
AT DESK COUNTY)
((IN DESK Y) (AT Y COUNTY)) AT DESK COUNTY)
IN DESK Y)
NIL IN DeSK HOME)
((AT HOME COUNTY)) AT DESK COUNTY)
AT HOME COUNTY)
((IN HOME COUNTY)) AT HOME COUNTY)
IN HOME COUNTY)
NIL IN HOME COUK7Y)
NIL AT HOME COUNTY)
NIL AT DESK COUNTY)
NIL AT PENCIL COUNTY) I

(21 FUNCTION CALLS)

((AT PENCIL COUNTY))

Now I run the program again. Note that this t there

are only 21 function calls, and-that the extra effort at the

end has been eliminatcl.

* I will not count as a bona fide call to SOLUTION2 if it is
not actually entered.

' VARIABLES is a function in Black's original system.

77



I

English Output

From the'thesis, T know that a list beginning with a list,

including the empty list, is a statement, and lists headed by

atoms represent quastlons. Why no' make SOLVE talk English to me?

(define phrase (x) as flipq x:$I (either ($i / (variable)) ($1) (either ($1 / (var-

table)) ($I))) ((either 2 (any i (the 1)) is I (either
3 (any 1) (the 1)))
(PHRASE)

I define the function PHRASE. PHRASE given (AT PENCIL

COUNTY) will produce (THE PENCIL IS AT THE COUNTY). PHRASE

given (AT PENCZL Y) will produce (THE PENCIL IS AT ANY Y).

Idefine question (x) as flipq phrase x ($ is $)
c r) 2 1 3 q)

QUESTION)

QUESTION is similar to PHRASE. QUESTION ((AT PENCIL COUNTY))

is (IS THE PENCIL AT THE COUNTY Q). QUESTION ((AT PENCIL Y)) is

(IS THE PENCIL AT ANY Y Q).

define clause (x) as flipq x ((either
nil-)
($1 (either ($I) -))-)

(either
( * ( - phrase 2)))
if (** (- phrase !/c II))) (either (Ic 12) (and

"* (- phrase 1 -) (= comma) ** (a hrase 2)) )
(*(kquestio 1 n (I periodj c cr

CLAUSE will transform questions or statements from Black's

internal representation into English.

78



(THEPENCL ATTHE COUNTY)
quesion (atpencil y))

IS TE PNCI ATANYY
clue(atpni county)

ISTEPECLA THE COUNTY Q
clauel~nl atpencil county)),

(THEPENIL I ATTHE COUNTY

claue ((((atpencil y) (at y county)) at pencil county))
(IFAND THEPENCIL IS AT THE COUNTY

D ug in CLAUSE! Let's see if PHRASE is doing-the right thing.

break (phrase t x)
PHRASE

IBREAK on PHRASE, the Ot" means that it will always break,

'n xthat it will print the value of X.

clause (( ((at pencil y) (at y county)) at pencil county))
(BREAK IN PHRASE)

* ((AT PENCIL Y))
*quit

PROCEED:

The trouble is an extra set of parentheses in certain situ- *

stions.

I UNBRWA PHRASE and advise it that when (CDRt X) is null,

to take (CAR X) instead of X.

unbreak (phrase)
PHRASE
(phrase :If (cdr x) is null, then (sotq x car x))
P HRASL

79



clause (( ((at pencil y) (at y county)) at pencil county):
(IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY, THI
PENCIL IS AT THE COUNTY

Now CLAUSE works correctly.

(tell solve after, (instead of reverse advice),
mapc (append corpus reverse solution) (fancyprint clause x
(SOLVE AFTER)

fNow instead of merely printing out the solution, I'll go

through its solution and FANCYPRINT* the result of applying CLAUSE

to each element on SOLUTION. I will also FANCYPRINT the corpus.

, A

solve ((at pencil county))
THE PENCIL IS IN THE DESK.
THE DESK IS IN THE HOME.
THE HOME IS IN THE COUNTY.
IF ANY X IS IN ANY Y, ANY X IS AT ANY Y.
IF ANY X IS IN ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS IN ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL IN ANY Y Q.
THE PENCIL IS IN THE DESK.
IF THE DESK IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE DESK AT THE COUNTY Q.
IF THE DESK IS IN ANY Y AND ANY Y IS AT THE COUNTY, THE
DESK IS AT THE COUNTY.

IS THE DESK IN ANY Y Q.
THE DESK IS IN THE HOME.
IF THE HOME IS AT THE COUNTY, THE DESK IS AT THE COUNTY.

IS THE HOME AT THE COUNTY Q.
IF THE HOME IS IN THE COUNTY, THE HOME IS AT THE COUNTY.

* FANCYPRINT is a trivial function which prints a list, suppressing
initial and final parentheses without spacing before periodo,
commas, and colons.

80



isTETM N H ONYQ

ITHE HOME I IN THE COUNTY.
THE HOME IS AT THE COUNTY.
THE DOE IS AT THE COUNTY.
THE PESCI IS AT THE COUNTY.

(21 FUNCTION CALLS)

((T PENCIL COUNTY))

elI



Endless Deductions

Now I am ready for the endless deJuct.on problem. (I am

now using a different corpus.) I instruct SOLUTIONi, before the

number advice, to search the HISTORY list and count the number

of times SOLUTION appears. If this is greater than 2, then quit

don't enter SOLUTION1.

(tell solutionl, (before number advice),
If (countf history ((solutioni $))) is greater than 2,

then quit)
(SOLUTIONI BEFORE)

(COUNTF is a function that uses F4IP. It's inputs are a

list and a pattern, and it counts the number of times the pattern

matches the list. HISTORY is described in Chapter 3, page 38.)

solve ((at pencil county))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS
AT ANY Z.

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

(8 FUNCTION CALLS)

NIL

It didn't get far enough to reach an answer. However, I

don't know how far it did get.

(solve bind record to nil)
SOLVE

I'll set up another dummy variable, RECORD. What I would

like to do, before anything else, is to save the arguments of

SOLUTION1 and SOLUTION2 on RECORD. If I just do this using TELL,

82



the advice will be appended at the end of the list of advice.

I heed to be able to put something on the front of the list of

advice.

(translate (tellS (either (first) ($(Si (aom) first))j~V $0 as ( system3 2 (utranslate -1) (either U normal)

(TR ANSLATE RULES)

Whenever I use the word FIRST it will mean to call SYSTEM3

instead of SYSTEMl.

(define system3 (what advice where) a
If (get what 'advi'sed) is nullt then(ytm what

advice where),
else (prog2 put cons if advice is atomic then advite,

lse (cons '.advice advice) end get what where
what where, what))

(SYVST EM3 )

SYSTEM3 will put the advice on the front.

(solutioni first' save x an record)

SOLUTION1

Now I tell SOLUTION1 FIXRST to save x on RECORD.

(solution? first save y on record)
SOLUTION?

Similarly SOLLUTION2,

(after solve mapc (reverse record) (fancyprint clause W)
SOLVE

and after'SOLVE, to print R2CORD.

03

Ir 1% W Y ~ ~



Now I repeat the question. I can see that the program is

on the right track. The last question it considered was "is

the desk at any y." If it deduces "the desk is at the home,"

-and the home is at the county," it will have deduced "the

pencil is at the county."

solve ((at pencil county))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z. ii,
IS THE PENCIL AT THE COUNTY Q.

r IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

(8 FUNCTION CALLS)

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

4 IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT THE COUNTY, THE PENCIL IS At THE
COUNTY.

IS THE DESK AT THE COUNTY Q..
IF THE DESK IS AT ANY Y AND ANY Y IS AT THE COUNTY, THE
DESK IS AT THE COUNTY. I

IS THE DESK AT ANY Y Q.
NIL

Since I an going to have to manipulate the COUNTF parameter

now set at 2, 1 would like to give it to SOLVE as one of its

inputs.

(tell solve to bind n to (car x) and pop x)
SOLVE

84

'-K.-- ~NOW



I tell SOLVE to BIND N to the first element of x, which

Will be this number, and to reset x to the rest of x.

(change solutloni, (replace greaterp nI $1 with n))
(SOLUTION1 BEFORE)

I replace the 'k" in GREATERP (countf something) 2, by N.

C could also have said (REPLACE (COUNTF HISTORY ((SOLUTION1 $)))

IS GREATER THAN 2 WITH (COUNTF HISTORY ((SOLUTIONi $))) IS GREAIER

THAN N).

Now try it with N set to 3.

solve ((3, at pencil county))
THE PENCIL IS AT THE DESK.
THE DESK AT THE HOME.
THE HOME 1S AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z., ANY X IS AT
ANY Z.

IS THE 1'NCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND A3Y Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.
IS THE PENCIL AT ANY U Q.

THE PENCIL I. AT THE DESK.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z
THE DESK IS AT THE HOME.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE HOME AT THE COUNTY Q.
THE HOME IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.

(17 FUNCTION CALLS)

a5



I,!

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNT.
THE PENCIL IS AT THE COUNTY.

IS THE PENCIL AT ANY Y Q.
(HE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, TH!
b'ENCIL IS AT ANY Z.

IS TOE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z, THi
PENCIL IS AT ANY Z. 4

IS THE PENCIL AT ANY Y Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS At ANY U, THE

4: IS AT ANY U. r

IS THE DESK AT ANY Y Q.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

IS THE HOME AT THE COUNTY Q.
THE PUME IS AT THE COUNTY.
IF THC HOME IS AT ANY Y AND ANY Y IS AT THE COUNTY, I
HOME IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
IF THE DESK IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

((AT PENCIL COUNTY))

The deducti.n took 17 function calls, and it considered

(IS THE PENCIL AT ANY Y) 3 times..

I also try the (AT PENCIL Y) question (previously I was working

with (AT PENCIL COUNTY)) to see how far I must allow it to run

in order to produce all three answers.

96



J/

I

solve ((1, at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.

* (3 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
((AT PENCIL DESK))

With N set to 1, it got one answer - the desk.

solve ((2, at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND AN4Y Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
r * THE DESK IS AT THE HOME.

THE PENCIL IS AT THE HOME.

(11 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY V IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
IF THE DESK IS AT ANY Z. THE PENCIL 'IS AT ANY Z.

87



J

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE PENCIL IS AT THE HOME.
((AT PENCIL HOME) (AT PENCIL DESK)) 'I

With N at 2, it also got the home.

solve ((3, at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z,

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE HOME AT ANY Z Q.
THE HOME IS AT THE COUNTY.
IF THE H)ME IS AT ANY Y AND ANY Y IS AT ANY U. THE HOME
IS AT ANY U.

IS THE HOME AT ANY Y Q.
THE PENCIL IS AT THE COUNTY.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS Al ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE DESK IS AT THE HOME.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

88



- _ _

7/

IS THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.

(39 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS Ai ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK.
IF TIE PENCIL IS AT ANY Y AND ANY Y IS A NY Z. THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY .Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE PENCIL IS AT THE HOME.
IF THE HOME IS AT ANT Z, THE PENCIL IS AT ANY Z.

IS THE HOME AT ANY Z Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY V IS AT ANY U, THE HOME
IS AT ANY U.

IS THE HOME AT ANY Y Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY U AND ANY U IS AT ANY Z, IHE HOME
IS AT ANY Z.

IS THE HOME AT ANY U Q.
IF THE COUNTY IS AT ANY U, THE HOME IS AT ANY U.

IS THE COUNTY AT ANY U Q.
IF TH£ COUNTY IS AT ANY Y AND ANY Y IS AT ANY Z, THE
COUNTY IS AT ANY Z.

IS THE COUNTY AT ANY Y Q.
THE PENCIL IS AT THE COUNTY.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

89



IS THE DESK AT ANY Y Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY U AND ANY U IS AT ANY Z, THE DESK
IS AT ANY Z.

IS THE DESK AT ANY U Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.

IS THE HOME AT ANY Y Q.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.

((AT PENCIL HOME) (AT PENCIL COUNTY) (AT PENCIL COUNTY) (AT£PENCIL DESK))

With N at 3, it got the county, as it should, but it took

39 function calls, because it kept reconsidering the same ques-

tions until it ran olot of room. Only then did it abandon this

question and proceed to the neyt one.

What I really want to do is note when a question repeats ano take

the answers found so far. I can do this because HISTORY is

available and I can leok back on it and find VAL, which has all

of the answers bound to it.

Instead of the count-f 'dvice, I will use a FLIP rule which

will look for SOLUTION1 on the HISTORY list, provided its argu-

ment x, matches the current x. In this case, it will return

with the value of VAL.

(tell solutioni, (instead of countf advire), (flipi history
'(- (solutionl -) (val -) (x S / (matches (x *))) -)

/(((t 3 2))) history))
SOLUTIONI BEFORE)

(define matches (x y) as
if x is null, then y it. null
if (car x) is equal to (car y) or
(variable car x) and (variable car y),

then (matches cdr x cdr y))
(MATCHES)

90



Two questions will match if they are identical except for

iubstitution of variables. Black's function VARIABLE is true

kf its input is the aamL of a variable, e.g., X, Y, U, V, etc...

(change solve, (delete n (backto advice) upI))
(SOLVE BEFORE)

I don't need the advice concerning N.

solve ((at pencil y))
THE PENCIL IS AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT
ANY Z.

IS THE PENCIL AT ANY V Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z 0.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOE AT ANY U Q.
TIE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.

(17 FUNCTION CA.LS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY-Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U.

91



IS THE DESK AT ANY Y Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOME AT AN UQ.
THE HOME IS AT THE COUNTY.
IF THE HOME IS AT ANY V AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.

IS THE HOME AT ANY Y Q.
IF THE COUNTY IS AT ANY Z, THE HOME IS AT ANY Z.

IS TflE COUNTY AT ANY Z Q.
IF THE COUNTY IS AT ANY Y AND ANY Y IS AT ANY U, THE
COUNTY IS AT ANY U.

IS THE COUNTY AT ANY Y Q.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
THE PENCIL IS AT THE HOME.
((A' PENCIL HOME) (AT PENCIL COUNTY) (AT PENCIL DESK))

Now the deduction requires only 17 function calls, and

looks reasonable!

I9i

92

-- . .-



JJ

4 4

CHAPTER 6

EXPERIMENPS WITH A PROBLEM SOLVER

The central aim of the General Problem Solver of Newell,

Simon and Shaw |381 was to divorce problem solving techniques

and heuristics from any task environment, and thus construct

a program that was truly general. A system was constructed that

succeeded in proving theorems in logic, and solving problems

such as the cannibal and missionary problem. However, the

system grew so massive and cumbersome, and the effort involved

in making modifications so enormous, that it has become more

or less frozen. (Newell has informed me that after some time

away from the program, it takes him weeks just to "get into the

r'. listing* and remember what the program does.)

I thought it might be worthwhile to use PILOT to construct

a system with the same goals as GPS, i.e., flexibility and

generality, although not as complex. I started with a minimal

configuration and used PILOT to make modifications as I went

along. In this way I did not give much forethought to the de-

sign of the system, but allowed it to develop as the experi-

mentation proceeded. The next section summarizes what happened,

and the following section contains a pnotocol which is an

extract from my sessions at the console.

93



Summary of Experiments

The basic design of the system is illustrated in the accom-

panying flow chart. I inplemented this flow chart by dividing

the various tasks among five functions, thus facilitating making

subsequent changes with advice. These functions are MOVES,

GOALP, GPS, MAKE, AND PROGRESS. MOVES generates a list of moves

for any given situation. GOALP recognizes when the problem has

been solved. The main loop of the program is GPS--MAKE--

PROGRESS--GPS. GPS is the executive routine which calls MOVES,

selects the first move on the list of possible moves, and calls

MAKE. MAKE makes the move, i.e., performs the necessary changes

in the problem representation, and calls PROGRESS.. DROGRES:

checks whether the problem has been solved by calling GOALP,

and, if not, calls GPS with the new position.

The first problem I attempted to solve with the system was

the cannibal and missionary problem. In this problem, three

cannibals and three missionaries are on one side of a river with

a boat that can carry only two men. The object is to transport

everyone across the river. The catch is that if there are

more cannibals than missionaries on any side at any time, the

cannibals will eat the missionaries. This is undesirable. It

is also assumed that the boat will not float across the river

by itself, i.e., someoe has to be in it to take it across.

I set up the problem using four variables, SIDEl, SIDE2,

FROM, and TO. SIDEI would represent the contingent on the near

side of the river, and SIDE2 those on the far side. FROM and

I hope Messrs. Newell, Simon, and Shaw will forgive me for
naming my program after theirs.

94

- , .ORIN



MIV

ESO

FIG. THIA SIPLETPOLMSLE

AN5

(O NO REPORT
MOV FAILURE.



TO would represent the direction of transfer, ii. other words,

the location of the boat. I advised GOALP of the terminal con-

ditions, and told MOVES to return with MOVEI and MOVE2, corres-

ponding to movin5 1 person and 2 people. (I had to define the

operation of moving appropriately.) I then advised MAKE to
make the appropriate changes in FROM, TO, SIDEI, and SIDE2, and

instructed PROGRESS to quit if the cannibals outnumbered the

missionaries. The only thing remaining was tn ensure that GPS

did not loop, i.e., send a cannibal across, bring him back, send

him across, bring him back, etc. I advised GPS to avoid looping

* by saving the positions encountered, searching thii list of

positions, and terminating a branch when a position repeated.

With this set of advice, GPS solved the problert.

Unfortunately, as one can see from the iutcraction shown

below, solving the problem simply meant that ten seconds after

input,GPS printed *T*, indicating the problem had been solved.

This was not very informative. Therefore, I modified the pyograu

to count the number of moves it considered, and to print the

solution. At this stage, I decided to see if I could get a

nice English output.

I' defined a function PLURAL, which took the plural of

nouns, and by advice, enabled it to handle the plurals of words

like both CANNIBAL and MISSIONARY - drop the my" and add "i e s'

etc. I defined a function PHRASE, which took a list of the form

(C M C M M), C standing for CANNIBAL and H for MISSIONARY, and

produced (TWO CANNIBALS AND THREE MISSIONARIES). (This was

necessary because there was no guarantee that the representation

would be sorted, and indeed it tusually wasn't.) When I got

PHRASE work: .g, I had the program print the solution and then

96

!



dded 6 facility to have it print out each move considered.

4ince liothing wat built into the program to distinguish one

tannibal from another (HOVEl simply meant take 1 person and move

the program would attemFt to send across one cannibal, then

to bring him back - that then being the only legal move - realize

Chat it was back where it startod, abandon this line of ettack,

ind generate as its next move, sending across the next cannibal,

tc. It was obvious that heuristics were needed.

As a first hauristic I told GPS that if it was trying to

mnd people across, Le., going FROM SIOEl and TO SIDE2, then

It should try to send as many men as possible, i.e., to consider

oving 2 before moving 1. This was to avoid fruitless consider-

Ations of trying to send each one of the original six people

across before trying combinations uf two. This heuristic reduced

the number of moves attempted from 68 to 35. I then added a

socond heuristic which had the effect of making the program

realize that once it had tried sending across a particular boat-

lload, and failed, it should not try the same move again. This

*educed the number of moves considered to 20. The length of the

solution in each case was 11 moves, which is the minimum number

required.

'Since GPS was supposed to be a general problem solving

Vrogram, I now asked it to solve the fox, goose, and corn problem.

in this problem, a farmer wants to carry a fox, a goose, and

some corn to the barn, but can't leave the fox alone with the

tgoose or the goose alone with the corn. In addition, he can

only carry one object at a time.

97

4, I I I I



Since this problem was similar to the cannibal and mission-

ary problem, I was able to carry over much of the advice already.'

given to GPS, GOALP, MOVES, MAKE, and PROGRESS, making only a

few modifications. GPS then solved the problem.

Professor Minsky suggested that I try the cannibal and

missionary problem again, this time with a boat that could

carry three people. This modification turned out to be easy

to achieve by advising MOVES. GPS only considered 12 moves 'I

to find the solution, now requiring only five moves.

I decided I would now like to be able to solve the problem

using the number of missionaries and cannibals as input para-

meters. I mouifie6 PROGRESS, changing the advice that checked

on the missionaries' safety to work with *any size population.

I then gave the program the problem with 4 missionaries and

4 cannibals, which can't be solved with a two man boat, as

the program discoveret. This problem cn be solved with a

larger boat,and the program fount solution for the modified

problem.

I decided I would like to s cify the size of the boat as

an input parameter also. After doing this, I asked the program

to SOLVE (CANNIBAL AND MISSIONARY PROBLEM FOR 3 IN A BOAT AND

FOR 4 CANNIBALS AND 5 MISSIONARIES).

At this point, the program ran out of space, primarily be-

cause I had, resident in core, all of FLIP, the SYSTEM functions,

and the EDIT package, in addition to tte problem solving program.

I made room by removing the EDIT functions and continued to a

solution of the problem. When I finished, I enabled the system

98



' to make room in the future when it required it, by telling tie

'system whenever there were less than 500 words of free storage

left, to remove the leart essential package. GPS then solved

a number of other problems.

I made two more interesting modifications to the program.

First, I advised it how to solve (HOW BIG A BOAT DO YOU NEED FOR

4 CANNIBALS AND 4 MISSIONARIES). This was a change conceptually

simple, since it only involved GPS calling itself with different

size boats until one was found that worked. However, I made a

more sophisticated revision that involved a problem in which some

of the missionary population might not be eaten by cannibals,

even though outnumbered. I called such a missionary TARZAN,

and asked the system tc solve problems such as (HOW BIG A BOAT

DO YOU NEED FOR 3 MISSIONARILS, 1 TARZAN, 4 CANNIBALS) - answer 2.

Protocol

(define gps as prog (x y)
setq X moves
gl if x is null then (return nil) end
setq y valueof car x
g2 If i is null then (go g3),

if (make car y) then (return t) end
pop y
go g2
g3 pop,'
go go )
(GPS}

This is the definition of GPS. GPS calls MOVES which re-

turns with a list of the move types, not the moves themselves.

GPS then computes all of the moves corresponding to a particular

type, and runs through them calling MAKE on each one.

99



3

(define moves as)
(MOVES)

(define make (move) as progress)
(MAKE)

(define progress as goalp or gps)
(PROGRESS)

(define goalp as)
(GOALP)

Definition of MOVES, MAKE, PROGRESS, GOALP. MOVES and GOALP

are defined as nothing - which means they return NIL. MAKE is

a function of one variable - its name being MOVE.

(define solve (fexpr) as
if (get ' start csetq normal car 1) is null,

then '(dont know how),
if (csetq history list cons ' solve 1) then (start nil))
(SOLVE)

SOLVE takes the statement of the problem and determines

whether the problem can be solved. It looks on the property

list of START for advtce on this problem. (Problems are labeled

by the first word in the statement, for example CANNIBAL.). If

there is none, SOLVE returns (DONT KNOW HOW). Otherwise it

calls START to begin solving the problem. SOLVE also sets the

NORMAL mode to the problem name so that further advice is inter-

preted in the context of this problem.

(define start (hist) as gps)
(START)

START performs the initialization and calls GPS. START

hati; one variable, HIST, which may be used for saving informa-

tion to be printed out at the end.

100



"I

Since I would like to use the same program for several .

diffe ent problems, I will prepare for different entrance points 

carre~pondinq to the various problems. This is done by placingfa comutation which will produce the advice at t" canonical

entry point labeled BEFORE, instead of the actual list of advice.

This s the role of the function SETUP.

(define setup (x) as mapc x (nconc x list before
'(lmbda (y) (get (caadr y) normal))))
(SETUP)

4ETUP places under the property BEFORE, the S-expression

1 (LAMBDA (X) (GET (CAADR Y) NORMAL)), which ip evaluated by

.ADVISE. This will get the list of advice from the correct pro-

.perty. As described in Chapter 3,the input to this LAAMBDA

.expression is the HISTORY list, and CAADR of the HISTORY list

"is always the name of the function just entered.

setup ((qps moves make progress goalp start))
NIL

(translate (start with $14$1 (repeat $1 SI)) as
(tell start to bind 3 to ($* quote 4)
Irepeat n and bind 1 to ($* quote 2)) and nil))
(TRANSLATE-RULES)

This rule causes instructions of the form (START WITH

fuu vwv xxx yyy ...) to be transformed into advice for START

i'which Will perform the appropriate operation of binding uuu to

,vvv, x6ex to yyy, etc. This advice corresponds to the initial-.

ization process.

101

sm g'o i II



A

4)

I now try to SOLT (CANNIBAL AND MISSIONARIES) and GPS

resoonds (DONT KNOW HOW) because under the property CANNIBAL

on the property list of START there is no advice yet. NORMAL

is set to CANNIBAL.

solve (cannibal and missionaries)
(DONT KNOW HOW)

(start with sidel (m m m c c c), stde2 nil, to side2,
from sidel) *

START

Start with sidel (m m m c c c), go to side2 from sidel.

(tell gcalp, return with sidel is null)
GOALP

Final condition - no one left on sidel.

(tell moves, return with '((movel) (move2)))
MOVES

Moves.

(define movel as alltran valueof from '($i) '((2) 1 3))
• MOVEI)

. MOVEI goes through VALUEOF FROM and makes a list containing

a move corresponding to every single element on FROM. In other

words, if FROM is SIDEl, and SIDE1 is (M C M C), then the value

of MOVE1 is ( I(M) C M C), ((C) M M C), ((M) M C C), ((C) M C M)).

Each member corresponds to a move, namely the one in which the

first item is moved, leaving the rest. MOVEI is easily defined

using a FLIP function ALLTRAN. ALLTRAN yields all possible

)02



transformations on a list with a given pattern and format.

!define rnove2 as alitran valueof from '($I $ $1)

MOVE2 is similar to MOVEl. For (M C .4 C), it returns

~((.MC) MC01 ((M M) CC)0 ((M C) C M), ((C M) M C), (CC M M),

'MC) M C).

(tell make, to (y) (setq Y from' and bind (valueof
from) to (cdr move) and bind valueof ' to) to

(ap'pend car move valueof to) and bind from to to and
bind to to y)
MAKE

I now tell HAKE to switch FROM and TO and make the appro-

priate jhanges on the sides.

(tell progress, if m is a member of sidel and 'm
is a member of side2 and (countq sidel ' )is not
equal to (countq sidel c), then quit)
PROGRESS

This gives the eating conditions to JROGRESS. It is not

sufficient to simply count and compare, b1ause when all of the

cannibals are on one side with no mission Jies, they do out-

number the missionaries 3 to 0. However, r obody gets eaten.

(gps save (cons from side2) on hist)
BPS

This saves the value of FROM and the value of SIDEZ on MIST.

This is sufficient to identify the position. It is not enough

to save only the value of SIDE2, or SIDEl, because there may be

103

r W Riw WP I..~ -~



a point in the solution in which the position is repeated with

respect to the values of SIDEl and SIDE2, but the boat is on

a.different side.

r(after gps pop hist)
GPS

After leaving GPS, I have to pop hist.

(tell progress, if searchf hst I((- from) $ /
setequal (- side2)))) then quit )

PROGRESS

This advice tells progress to search through HIST looking

for an element whose first member is equal to the value of FROM,

and the rest of which is equal, in the set terminology sense,

to the value of SIDE2. We must use set equality because the

representation may have become rearranged.

solve (cannibal and missionaries)
e*T*

Now it can solve the problem.

Unfortunately, GPS gives me little information about what

it did, so I set up two more variables, NUMBER, and SOLUTION.

(start with number 0. solution nil)
START

(make increment number)

MAKE

At MAKE, I increment number.

104



Cafter goalp if value then (setq solution history))
GOAL P

After GOALP, if its value is not NIL, which means the

answer has been found, I save the HISTORY list on SOLUTION. 14

(after start If value is not equal to '(dont know
how), then (printred cons number *(moves considered)))
START

When I get back to STAR-A, if the value is not (DONT KNOW *

Now), I print the number of moves considered,

(after start mapc (listf reverse'solution
'((move S) ((t 2 2))) nil) (print X))
START

and a summary of what they were. R-r: I use another FLIP

,function LISTF, to look through the HISTORY list and make a list

laf all of the bindings of the variable MOVE (which is the name

of the argument of MAKE).

solve (cannibal and missionaries)

(68 MOVES CONSIDERED)

M C)l M C C)
M) C)

C) CC)

C C) 0)
C) 'C M M )
C C))

*1'*

105



This is the solution. The first move was to takj a mission-

ary and a cannibal across, leaving two missionaries and two

cannibals on the near side. Then a missionary came back leaving

a lone cannibal on the far side. Next two cannibals went across,

etc.

106



English Output

(define plurall (x y) as prog3 clearbuff
ar (apend x y(pac ),intern mknam)

PLURALl is a function which takes its two arguments and

makes one word out of them.

(deiepua (x) as'plurall explode x '(s))
(LURAL

PLURAL calls PLURALI with its input and *(a).* Thus

PLURAL (CANNIBAL) IS CANNIBALS.

plural (cannibal)
CANNIBALS

plural (missionary)
MISSIONARYS

(plurall if (last x) is equal to l)
then to (rast x) and (setq y '(i s))
PLURALI

Telling PLURALl if the last letter is a *y," is should

RLAST, remove the last letter, and use 01 E S" instead of *S.*

plural (missionary)
MISSIONARIES

Nov it works correctly.

107



I/

(define phrase (x y) as if x is null, then '(nobody),
else (transform sublis y x
((-" $1 / (atom) (repeat S (/t 2) t

(,-t4 (repeat 1)e((I (car n) top)
((rep ((either ((a 1) 1) (( ) $) (( ) $1)" ($i $1))}))

((repeat (either (Ic 1 1) (a 2) (two (a plural 2))
(three (z plural 2)) (1 (- plural 2
(- com,na))))

$2 $I) (I) exit)
2/ $1 $ $1 (1 and 3) exit)

!'j: (((back 3) $2 $1) (1 and 2)) )) )

(HAE

PHRASE sorts the people on a side, substituting their proper

names, i.e., cannibal for *c* and missionary for "m,* and then

makes a nice phrase out of it.

I test PHRASE.

phrase ((c) ((c . cannibal)))
(A CANNIBAL)

phrase ((c m) ((c . cannibal) (m . missionary)))
(A CANNIBAL AND A MISSIONARY)

phrase ((c m c m M) ((c cannibal) (m . missionary)))
(TWO (CANNIBAL)$ AND THREE (MISSIONARY)S)

A Bug, because I have extra parentheses.

(plural if x Is not atomic, then (setq x car x))
PLURAL

Fix the BUG

phrase ((c m c m m) ((c . cannibal) (m . missionary)))
(TWO CANNIBALS AND THREE MISSIONARIES)

phrase ((c m c m m m 1) ((c . cannibal) (M . missionary)
(1 . lion)))
(TWO CANNIBALS , 4 MISSIONARIES , AND A LION)

and it works correctly.

108

' - " i.' ii~~



(tell start after. (instead of listf advice).
if value and (cadr solve) is equal to I and, then
(fancyprint listf reverse solution '((move (S $) S

(either ((from . sidel)) ((from . side2)))),
'(bring (* (- phrase (/t 2 2 1) (e a))

(either (back' (across)) (- comma) leaving
(** (- phrase (/t 2 3) (= a))) on
(either (side2) (sidel)) (- period' (- cr) (- cr))
a (c . cannibal) (m missionary))) ))

START AFTER)

I replace the LISTF advice with advice for prcducing fancy

output. The result is showr below.

solve (cannibal And missionaries)

(68 MOVES CONSIDERED)
BRING A HISSIONARY AND A CP4NIBAL ACROSS, LEAVING TWO

MISSIONARIES AND TWO CANNIBALS O SIDEI.

BRING A MISSIONARY BACK, LEAVINC A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDEl..

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIIS ACROSS, LEAVING A CANNIBAL AND
A MISSIONARY ON SIDEI.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING A
MISSIONARY AND A CANNIBAL ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
ON SIDEl.

BRING A CANNIBAL BACK, LEAVINZ THREE MISSIONARIES ON
SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL ON
SIDEI.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL AND THREE
MISSIONARIES ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING NOBODY ON SIDEI.

109

ill.



In order to evaluate new heuristics, I also need a facility

for printing each move as it is considered. I will modify MAKE,

so that if the word "PROBLEM" appears in the input, MAKE will

print each move in a nice format.

(make : if '*problem is a member of solve, then
(fancyprint constructl nil '(bring (** (- (phrase car
move a)))

(a (sublis '((sidel back) (side2 . across))from)) (- or) '

sidel ;(** ( (phrase sidel a))) (= cr)
side2 (** = (phrase side2 h))) (= cr) (a cr))

cons '(a (c cannibal) (m missionary)) history))
MAKE.

solve (cannibal problem)
BRING A MISSIONARY ACROSS
SIDEI: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING A MISSIONARY ACROSS
SIDEl: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING A fMISSIONARY ACROSS
SIDEI: TWO MISSIONARIES AND THREE CANNIBALS
SIDE2: A MISSIONARY

BRING A CANNIBAL ACROSS
SIDEI: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING A CANNIBAL BACK
SIDEl: THREE CANNIBALS AND THREE MISSIONARIES
SIDE2: NOBODY

BRING A CANNIBAL ACROSS
SIDEI: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING A CANNIBAL BACK
SIDEI: THREE CANNIBALS AND THREE MISSIONARIES
SIDE2: NOBODY

BRING A CANNIBAL ACROSS
SIDEI: THREE MISSIONARIES AND TWO CANNIBALS
SIDE?: A CANNIBAL

BRING A CANNIBAL BACK
SIDEI: THREE CANNIBALS AND THREE MISSIONARIES
SIDE2: NOBODY

110



f f
BRING rWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND THREE CANNIBALS...... . SIDE2: TWO MISSIONARIES

BRING TWO MISSIONARIES ACROSS
SIDEI: A MISSIONARY ANU THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEI: TWO MISSIONARIES AND TWO CANNIBALS A
SIDE2: A MISFIONARY ANij A CANNIBAL

etc.

These are the first 12 moves considered. Note that the

program does not assume that any one missionary is different

Sfrom any other.

The fixst heuristic is to try MOVE2 before MOVE1, when the
boat is going across the river, but keep MOVEl first when coming

back. I instruct MOVES to reverse its value if TO is equal to

(tell moves after, if to is equal to slde2, then
return with (reverse value))
MOVES

solve (cannibal)

(35 MOVES CONSIDERED)

*T*

Now the number of moves is reduced to 35. The next heur-

istic is to save the moves considered at each ply, and not attempt

one which is SETEQUAL to a move considered before. SETEQUAL

must be used because the move (H C) should eliminate (C M).

(gps bind moves to nil)
GPS

111



i : •

Setting up the dummy variable MOVES.

(tell make first, if searchp moves (setequal (car
move)), then quit, else do save (car move) on moves)
MAKE

Telling MAKE, FIRST, to search MOVES, and if it finds

something which is SETEQUAL to (CAR MOVE), then quit. Otherwise,

save (CAR MOVE). This cuts the solution down to 20 moves, re-

produced here in full.

solve (cannibal and missionary problem)
BRING TWO MISSIONARIES ACROSS
SIDEI: A MISSIONARY AND THREE CANNIBALS
SIDE?: TWO MISSIONARIES

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY AND A CANNIBAL

BRING A MISSIONARY BACK
SIDEI: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL

BRING TWO MISSIOARIES ACROSS
SIDEI: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEI: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

BRIIG TWO CANNIBALS ACROSS
SIDEI: THREE MISSIONARIES
SIDE2: THREE CANNIBALS

BRING A CANNIBAL BACK
SIDEI: A CANNIBAL AND THREE MISSIONARIES
SIDE2: TWO CANNIBALS

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEI: TWO MrSSIONARIES
SIDE2: THREE CANNIBALS AND A MISSIONARY

BRING TWO MISSIONARIES ACROSS
SIDEI: A CANNIBAL AND A MISSIONARY
SIOE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEI: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

112



BRING A CANNIBAL BACK
SIDE): TWO CANNIBALS AND A MISSIONARY
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING TWO MISSIONARIES BACK
SIDE): THREE MISSIONARIES AND A CANNIBAL
SIDE2: TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL BACK
SIDE): TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY AND A CANNIBAL

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEI: A CANNIBAL AND A MISSIONARY
SIDE?: TWO MISSIONARIES AND TWO CANNIBALS

BRING TWO MISSIONARIES ACROSS
SIDE): TWO CANNIBALS
SIDE?: THREE MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY BACK
SIDE): A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A CANNIBAL BACK
SIDE): THREE CANNIBALS
SIDE2: THREE MISSIONARIES

BRING TWO CANNIBALS ACROSS
SIDEI: A CANNIBAL
SIDE2: TWO CANNIBALS AND THREE MISSIONARIES

BRING A CANNIBAL BA.K
3IDEI: TWO CANNIBALS
SIDE?: A CANNIBAL AND THREE MISSIONARIES

BRING TWO CANNIBALS ACROSS
SIDE): NOBODY
SIDE?: THREE CANNIBALS AND THREE MISSIONARIES

(20 MOVES CONSIDERED)

BRING A MiSSIONARY AND A CANNIBAL ACROSS, LEAVING
TWO MISSIONARIES AND TWO CANNIBALS ON SIDE).

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON
SIDE?.

BRING TWO CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDE).

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDE).

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING
A MISSIONARY AND A CANNIBAL ON SIDE2.

BRING TWO MISSIONARIES ACROSS,. LEAVING TWO CANNIBALS
ON SIDE).

113

"Po " i lp I Ii |



BRING A CANNIBAL BACK, LEAVING THREE MISSIONARIES ON

SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL ON SIDEl.i

BRING A CANNIBAL BACK, LEAVING A CANNIBAL AND THREE
MISSIONARIES ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING NOBODY ON SIDEI.

*T *

Now I try the fox, gooose, and corn problem.

solve (fox, goose, and corn problem)
(DONT KNOW HOW)

I can use GPS, START, GOALP, MOVES, MAK(E, and PROGRESS

CANNIPAL, for CPS, START.... FOX, with only a few slight changes:

I must change (mi m m c c c) to (fox goose corn) in starting con-

ditions; MOVES must return (MOVEO) and (MOVEl) instead of (MOVEl)

and (MOVE2), and

(use gps cannibal)
(GPS CANNIBAL)

(use start cannibal but (replace m upi with (fox goose
corn)))
(START CANNIBAL)

(use goalp cannibal)
(GOALP CANNIBAL)

( use moves cannibal but
(replace movel with moveO) (replace move2 with movel))
(MOVES CANNIBAL)

(define moveO as list cons nil valueof from)
(MOVED)

(use make cannibal)
(MAKE CANNIBAL)

(use progress cannibal)
(PROGRESS CANNIBAL)

114

t



I must change the forbidden conditions. Instead of the

countq advice, PROGRESS must check to see whether the goose is a

member of the TO side. If anything else is'also a member, it

should quit.

(tell progress (instead of countq advice)
if goose is not a member of (valueof toj, then ignore,
if (cdr valueof to) then quit)
PROGRESS FOX) I . .

Now GPS begins to solve the problem.

solve (fox, goose, and corn problem)
BRING A FOX ACROSS
SIDEl: A GOOSE AND A CORN
SIDE2: A FOX

BRING A GOOSE ACROSS
SIDEl: A FOX AND A CORINT. 0

** E~RROR CALLED

I interrupt it because

(tell phrase after, if normal is equal to fox,
then return with (subst tHe a value))
PHRASE I

"THE FOX" sounds much better than "A FOX," an it's easy

to change.

solve (fox, goose, and corn problem)
BRING THE FOX ACROSS
SIDEI: THE GOOSE AND THE CORN
SIDE2: THE FOX

BRING THE GOOSE ACROSS
SIDEI: THE FOX AND THE CORN
SIDE2: THE GOOSE

115



BRING NOBODY BACK
SIDEl: THE FOX AND THE CORN
SIDE2: THE GOOSE

BRING THE FOX ACROSS
SIDEI: THE CORN
SIDE2: THE FOX AND THE GOOSE

BRING NOBODY BACK
SIDEl: THE CORN
SICE2: THE FOX AND THE GOOSE

BRING THE FOX BACK
SIDEl: THE FOX AND THE CORN
SIDE2: THE GOOSE

BRING THE GOOSE BACK
SIDEI:-THE GOOSE AND THE CORN
SIDE2: THE FOX

BRING THE GOOSE ACROSS
SIDEI: THE CORN
SIDE2: THE GOOSE AND THE FOX

BRING THE CORN ACROSS
S!DEl: THE GOOSE
SIDE2: THE CORN AND THE FOX

BRING NOBODY BACK
SIDEl: THE GOOSE
SIDE2: THE CORN AND THE FOX

BRING THE GOOSE ACROSS
SIDEI: NOBODY
SIDE2: THE GOOSE, THE CORN, AND THE FOX

(11 MOVES CONSIDERED)

*T*

The sqiution takes 7 moves. GPS only considers 11 moves

all together.

solve (fox and goose)

(11 MOVES CONSIDERED)

BRING THE GOOSE ACROSS, LEAVING THE FOX AND THE CORN
ON SIDEI.

BRING NOBODY BACK, LEAVING THE GOOSE ON SIDE2.

BRING THE FOX ACROSS, LEAVING THE CORN ON SIDEI.

BRING THE GOOSE BACK, LEAVING THE FOX ON SIDE2.

116

Inrv. p At -7



I"l

BRING THE CORN ACROSS, LEAVING THE GOOSE ON SIDEI.

BRING NOBODY BACK, LEAVING THE CORN AND THE FOX ON
SIDE2.t BRING THE GOOSE ACROSS, LEAVING NOBODY ON SIOEI.

I return to the cannibal and missionary problem and add

(MGVE3% to the list of move types.

(change moves (insert (move3) after (move2)))
(MOVES CANNIBAL)

(define move3 as alltran valueof from '($I - $1 - Si)
11'((2V4 6)1 3 5 7))|MOVE3)

MOVE3 is defined in a fashion similar to MOVE2 and MOVEl

using ALLTRANI.

solve (cannibal and missionary problem)
BRING THREE MISSIONARIES ACROSS
SIDEI: THREE CANNIBALS
SIDE2: THREE MISSIONARIES

BRING A MISSIONARY BACKSIDEI: A MISSIONARY AND THREE CANNIBALS

SIDE2: TWO MISSIONARIES

BRING TWO MISSIONARIES BACK
.. SIDEI: TWO MISSIONARIES AND THREE CANNIBALS 

.

SIDE2: A MISSIONARY

BRING THREE MISSIONARIES BACK
SIDEl: THREE MISSIONARIES AND THREE CANNIBALS
SIDE2: NOBODY

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEI: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY AND TWO CANNIBALS ACROSS
SIDEI: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

117

. " ' - .. ,--* _ - m. a-..-. : : '"~U#..:.*' 
" . ......P- "q



BRING THREE CANNIBALS ACROSS
SIDEI: THREE MISSIONARIES
SIDE2: THREE CANNIBALS

. BRING A CANNIBAL BACK
SIDEI: A CANNIBAL AND THREE MISSIONARIES
SIDE2: TWO CANNIBALS

BRING A CANNIBAL AND TWO MISSIONARIES ACROSS
SIDEI: A MISSIONARY
SIDE2: THREE CANNIBALS AND TWO MISSIONARIES

BRING THREE MISSIONARIES ACROSS
SIDEI: A CANNIBAL
SIDE2: THREE MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK.
SIDEI: A MISSIONARY AND A CANNIBAL
SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: NOBODY
SIDE2: THREE MISSIONARIES AND THREE CANNIBALS
(12 MOVES CONSIDERED)
BRING THREE CANNIBALS ACROSS, LEAVING THREE MISSIONARIES

ON SIDEI.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL ON
SIDEI.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES AND
TWO CANNIBALS ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEI.

*T*

Now the solution only takes five moves instead of the eleven

required for a two man boat. Only 12 moves are considered in-

stead of 20. Both heuristics introduced earlier still operate

in conjunction with this problem.

I would now like to be able to indicate the number of cannibal(s)

or missionary(ies) in the initial statement of the problem. Pre-

paratory to this, I'll have to make the PROGRESS evaluation a

little more subtle.

118

.. ... .... -- . k, . ... - -- ki . . . , '.



(tell progress (instead of countq advice),
if (eaten sidel) or (eaten side2) then quit)
(PROGRESS CANNIBAL)

This replaces the old counting method with a call to the

function EATEN.

(define eaten (x) as ' i ts a member of x and
(eval cons plus x '((m . -1) (c . 1))) is greater than
0)
(EATEN)

Basically what EATEN does is take the representation of a

side, e.g., (m c m m c), puts "PLUS* in front of it, which yields

(PLUS m c m m c), and evaluates this with m--i and c=l. If the

resulting score is greater than zero, then the cannibals win,

and the program must abandon this line of attack.

(change start (replace m up2 with (flipq (sublis
'((cannibals . c) (cannibal . c) (missionaries . m)
(missionary . m)) solve)
(either C- for $1 $1 and $1 Si) (-)))
b teither ((repeat (- car 3) (/t 1 4)) (repeat (- car -2)/t I I1 )

(r Imnm C c M1))
(START CANNIBAL)

START must be modified accordingly. When I say SOLVE

. .. FOR N Y AND M Z), START will make a list of N Y's and M Z's

be the starting conditions; otherwise it uses (m m m c c c).

I give GPS an easy problem to check it out.

solve (cannibal and missionary problem for I cannibal
and I missionary)

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEI: NOBODY
SIDE2: A CANNIBAL AND A MISSIONARY

(1 MOVES CONSIDERED)

119



BRING A CANNIBAL AND A IISSIONARY ACROSS, LEAVING
NOBODY ON SIDE1.

*T*

Now I am going to make it say (1 MOVE CONSIDERED). First

I'll define a function AGREE, which does what a portion of

PHRASE used to do.

(define agree (x y) as list sblis '((1 , 1) (2 two)
(3 . three)) x, if x is equal to I then y, else
(plural y))
(AGREE)

alree (I cannibal)
I CANNIBAL).

a ree (2 missionary)
TWO MISSIONARIES

This is what AGREE is supposeu to do.

(change start after (replace printred nI with
(nconc agree number move '(considered))))
(START AFTER)

Now I change START.

solve (cannibal and missionary problem for I cannibal
and I missionary)
BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEI: NOBODY
SIDE2: A CANNIBAL AND A MISSIONARY

(I MOVE CONSIDERED)

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING
NOBODY ON SIDE1.

*T*

120

- P



Now I try the problem with 4 cannibals and 4 missionaries.

This 'can't be solved with only a two man boat.

solve (cannibal and missionaries for 4 cannibals and
4 , 4 missionaries)

(72 MOVES CONSIDERED) j

* NIL
j

I read in the advice for the three-man boat that was made

earlier. (PILOT had saved it under the file GPS7 LISP.)

evalread (gps7 lisp speak)
CHANGE MOVES (INSERT (MOVE3) AFTER (MOVE2)))

(MOVES CANNIBAL)
(DEFINE MOVE3 AS ALLTRAN VALUEOF FROM ' (Si S S $ SI)

((2 4 6) 1 3 5 7))
(MOVE3)
STOP

solve (cannibal and missionaries for 4 cannibals and
4 missionaries)

* (17 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
4 MISSIONARIES ON SIDE1.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES ON
SIDEI.

BRING A CANNIBAL BACK, LEAVING THREE. CANNIBALS ON
SIDE2.
BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL

AND A MISSIONARY ON SIDEI.

BRING A NISSIONARY AND A CANNIBAL BACK, LEAVING TWOMISSIONARIES AND TWO CANN!BALS ON SIDE2

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL ON SIDEI.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

*T*

121



Now GPS solves "this problem and another one.

solve (cannibal and missionaries for 4 cannibals and
5 mission~aries)

(10 MOVES.CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
5 MISSIONARIES ON'SlOE1.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
AND TWO MISSIONARIES ON SIDEI.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES AND
TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL AND A MISSIONARY OR SIDEl.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

CRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDE1.

•T*

(change moves (delete ,hove3 I1))
(MOVES CANNIBAL)

I would like to solve this latter problem with the original

two man boat so I delete the MOVE3 advice.

solve (cannibal and missionaries for 4 cannibals ead

5 missionaries)

(30 MOVES CONSIDERED)

BRING TWO CANNIBALS ACROSS, LEAVING TWO CANNIBALS
AND 5 MISSIONARIES ON SIDE1.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWI CANNIBALS ACROSS, LEAVING A CANNIBAL AND

5 MISSIONAqIES ON SIDE1.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE?.

BRING TWO MISSIONARIES ACROSS, LEAVING IWO CANNIBALS
AND THREF MISSIONARIES ON SIDEI.

122



BRING A CANNIBAL BACK, LEAVING TWO MISSIONARIES AND
A CANNIBAL ON SIDE2.

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING TWO
CANNIBALS AND TWO MISSIONARIES OR SIDEI.

BRING A MISSIONARY BACK, LEAVING TWO CANNIBALS AND TWO
MISSIONARIES ON SIDE2.

BRING A M!SSIONARY AND A CANNIBAL ACROSS, LEAVING A
CANNIBAL AND TWO MISSIONARIES ON SIDE].

BRING A CANNIBAL BACK, LEAVING THREE M!SSIONARIES
AND TWO CANNIBALS ON SIDE?.

4 BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING A
CANNIBAL AND A MISSIONARY ON SIDE1.

BRING A MISSIONARY CACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING A
rMISSIONARY ON SIDEI.

BRING A CANNIBAL BACK, LEAVING 4 MISSIONARIES AND
THREE CANNIBALS ON SIDE2.

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING
NOBODY ON SIDEI.

This solution takes 15 moves, as opposed to a seven move

(solution for a larger boat. In the latter case, 10 moves were

,considered while in this one 30 moves were considered.

Rather than continually adding and removing the MCVE3 advice,

SI would like to specify the size of the boat as an input parameter.

(start (put (list (fllpq solve ((either (- for S1
($set num .car -1)) in a boat -) (($set num '2) -)))
(advice quote (((repeat ( nun) (moven (car n
I// list ' mves cannibal)))))))))))))
START

If I say "a boat that can carry 3," MOVES will return with

((MOVEN 1), (MOVEN 2), (MOVEN 3)).

123.



MOVErI is si 1.1la r to MOvE , M 'L~,and MOVE3; it computej the

approptiat. 'yatter&anc forma!; foi ALLT&Al% If nlis 3, it con-

*structs the .*t (1- 134 6 1, ard uscs 'thfs to assembl, the
~ are 0$1 4" 1$ ) and t e fomt0 ( 1 3 5 7),for

ALAJ. Note that these are identical to those in the original

'. -- definitio~n of 0VE3. ..

(define maven WI? as prog 2 setqn li~(ipq thrun addi
(times 2 n) ((repeat 12 $1) $1) (((repeat $ $1)!
(repeat 2) (repeat !1 .--1) alit an valeffo ,a
n cdr n)

**ERROR CAL.LED
SPARSING :PROG2 SETQ N FLIPQ THnUff ADI (TIMES 2 N)
(REPEAT Si SI)1 i (((REPEAT $ $I)) (REPEAT 2)
REPEAT 1) -1) ALLTRAN YALUEOF FROM COAk N CDR N)

(EDIT OR FORGET IT)

This error is because THRUN has not been defined at this

point. Therefore, the parsing routine doesn't know how many

arguments is has. (THRUN will be the functibzjthat constructs

the list (1 2 3 4 5 6 7).) 1 do this section of parsing myself

by substituting in (THRUN (ADD1 (TIMES 2 N)) for the unparsed

segment.

(replace thrun n2 with (thrun (addi (times 2 0M))
**ERROR CALLED

( PARSING :PROG2 SETQ ft FLIPQ THRUN (THRUM (ADDI
TIMES 2 N))) ((REPEAT $1 Si) $1) (((REPEAT S $1))

X x IREPEAT 2) (REPEAT 1) -1) ALLTRAN VALUCOF FROMr
COAR N CDR N)

(EDIT OR FORGET IT)

I forgot to take out THRUN.

124

7~m -.-. Z-



DE I NE MOE (N SaO2ST FI4(HU A

(TIMES 2 N))) ((REPEAT $1 $1) $1) ((URfPEAT -- S $1))
(REPEAT 2) (REPEAT 1) -1)'ALTRAN VALUEOF FROM. CDAR .

N CDR N)
stop

(MOVEN)

(define thru. (n) as prog (xi)
loop setq x cons n x,
if (zerop setq n subl. n) then (return x) end,
go loop)

(TFIuN)

thrun (7)

(1 2 3 4 5 6 7)

Now I define THRLN

breaklist (moves r, oven)
(MOVES MOVEN)

* and BREAK on MOVES and MOVEN to see if they are correct.

*solve (cannibal and missionary problem for 3 in a boat
and for 4 ca-nnibals and 5 missionaries)
(BREAK IN MOVES)

I 99t a BREAK in MOV7ES,

stop-
(JVALUE OF MOVES)(MOVEN 3) (MaVEN 21 (MaVEN 1))

with the correct value. Note that it is reversed because of

the heuristic introduced earlier.

(BREAK IN MOVEN)
n

125



A Break in MOVEN; I ask for the value of N; it is 3.

ask that £4OVEN be evaluated.

- eval
*GC AT 03041 FULL WORDS 723 FREE 148 PUSH DOWN

.DEPTH 270
*ERROR NOROCH

NIL
.(BREAK IN NOVEN)

The BREAK ±5 maintained in spite of the error. Iwipe out

the EDIT routines to make space, and go on.

(wipe edit)
- . (EDIT)

evil
"ERROR NUilYAL

$1( Si $1S S $1) 2 4 6 1 3 5 7)
(BREAK IN ?4OVEN)

1 6 This error is because N has been changed by Z4OVEN, I .must

reset it to 3, which I do.

(setq r 3) eval
4 3

(MOVEN EVALUATED)
(car maven)
(C C CC N N4 N MM)

(cadddr maven)
(C C M CC N N N N)

MOVEN is evaluatec, I look at the first element of its value,

Land at the third element -both, are wro~ng. I1 BREAK ALLTRAN,

reset n and try again.

(breaklist alltran)
(ALL TRA N

(Setq n 3)
3

*val
(BREAK IN ALLTRAN)

(24 6 1 357)

126



ALLTRAN is not getting the right value for z. I'll set it

correctly and see if anything else is wrong.

(setq z ((2 4 6) 1 3 5 7))
(2 4 6) 1 3 5 7)'

eval
GC AT 03041 FULL WORDS 730 FREE 106 PUSH DOWN
DEPTH 361

*** ERROR NOROOM
NIL
(BREAK IN ALLTRAN)

I ran out of Pp-Ece again. This time' I wipe the SYSTEM

routines.

(wipe )system)
(SYSTEM)

eva 1
tALLTRA4 EVALUATED)

(car illtran)
((C C C) C N N N M N)

(cadddr alitran)
((C C M) C C N N N M)

%A.LLTRANis correct. I quit, and'go back to the top, and

restore SYSTEM and EDIT.

ok
(AL LTRAN)
(NOV E.N EVALUATED)

quit
*** ERROR CALLED
(NOVEN)

*restore (system edit)
(SYSTEM EDIT)

The first thing to do is correct the bug in MOVEN.

(change moven expr (replace '(repeat 2) with~ ((repeat
2))))
* (NOVEN EXPR)

127



(before all if tsleft is less than 500, then (makeroom)
ALL

I decide to have the system itself make room, I can do this

by advising ALL functions to check the number of words left.

(define makeroor~ as prog (X)
setq x '(upd a e edit system break),
fancyprint cons lastfn append '(: only) cons fsleft

append '(words left)(list period cr),
loop if (get car x Iwi ped) is null then

(fancyprint append . (i had to wipe) cons wipel car xlist period cr),
if pop x then (go loop)
(MAKE ROOM)

MAKEROOV calls WIPE on (UPDATE EDIT SYSTEM BREAK) until it

can find something to wi~e out, and then prints an appropriate

message.

solve (cannibal and missionary pi-oblem for 3 in a boatand for 4 cannibals and 5 missionaries)
(BREAK IN MOVES)

(unbreaklist "moves)
(MOVES)
ok
(MOVES)
(BREA:' IN MOVEN)

eva 1
(BREAK IN ALLTRAN)

eval
Gc AT 03041 FULL WORDS 716 FREE 140 PUSH DOWN
DEPTH 450
SERROR NOROOM

(BREAK INd ALTRAN)

The system aiidn't call MAICEROOM because It ran out of space

while intzide oi. a function that is not advised, namely AM!, a

subfunction of ALLTRAN. If I give AM1 some advice, then the

check for available space will also be performed here.

128



(system)
(tell ami before nil)

7SYSI: ONLY 994 WORDS LEFT.
M I HAD TO WIPE EDIT.

AMI

ok
NIL

While auvising A141, SYSi ran into a situation in which there

were fewer than 994 words loft - actually there were only 140

according to the error message. However, a garbage collection

occurred befLre the print out of the message and so it states,

somewhat contradictorily, that there are only 994 w L'ds left.

eval

I go on with the GPS problem.

AM): ONLY 453 WORDS LEFT.
I HAD TO WIPE SYSTEM

(ALITRAN EVALUATED)
(car alitran)
((C C 0) C M M 14 M M)

Correct.

(Inbreaklist alitran maven)
(ALLTRAN MOVEN)

Unbreak everything and] go.

ok
(ALLTRAN)
(0MOVEN EVALUATEV)

o k
(NO V EN )
BRING THREE CANNIBALS ACROSS
SIDEl: A CANNIBAL AND 5 MISSIONARIES
510E2: THREE CANNIBALS

129



BRING A CANNIBAL BACK
S'IDEI: TWO CANNIBALS AND 5 MISSIONARIES
SIDE?: sAO CANNIBALS

BRING TWO CANNIBALS AND A i4ISSIONARY ACROSS
SIDEl: 4 MISSIONARIES
SIDE?: 4 CANNIBALS AND A MISSIONARY

BRING A CANNIBAL AND TWO MISSIONARIES A.ROSS
SIDEI: A CANNIBAL AND THREE MISSIONARIES
SIDE?: THREE CANNIBALS AND TWO MISSIONARIES

BRING THREE MISSIONARIES ACROSS
SIDEI: TWO CANNIBALS AND TWO MISSIONARIES
SIDE?: THREE MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEI: THREE MISSIONARIES AND TWO CANNIBALS
SIDE?: TWO MISSIONARIES AND TWO CANNIBALS

BR!G A MISSIONARY AND TWO CANNIBALS ACROSS
SIDEI: TWO MISSIONARIES
SIDE2: THREE MISSIONARIES AND 4 CANNIBALS

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEI: A CANNIBAL AND A MISSIONARY
SIOE?: 4 M!SSIONARIES AND THREE CANNIBALS

BRINi A MISSIO:;ARY SACK
SIDEi: TbWO M!SSIONARIES AND A CANNIBAL
STOLZ: THRUE CANNIBALS AND THREE MISSIONARIES

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEI: NOBODY
SIDE?: 5 MISSIONARIES AND 4 CANNIBALS

(10 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
5 MISSIONARIES ON SIDEI.

BRING A CAMNI. ,L BACK, LEAVIPG TWO CANNIBALS ON SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
AND TWO MISSIONA.IES ON SIOEI.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES AND
TWO CANNIBALS ON SIDE?.

.BING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNIBAL AND A MISSIONARY ON SIDEI.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE?.

BRING T40 MISSICNARIES AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEI.

"*T*

130

.. . .. . . .t. .. ._ -_ _ _ , .



I now solve various problems.

solve (cannibai)

(20 MOVES CONSIDERED)

*T*

solve (cannibal and missionaries for 3 in a boat)

(12 MOVES CONSIDERED)

BRING THREE CANN1IBALS ACROSS, LEAVING THREE
MISSIONARIES ON SIDEI.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING THREE MISSIONAPIES ACROSS. LEAVING A CANNIBAL
ON SIDEI.

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARIES
AND TWO CANNIBALS ON SIDE2.

BRING A MISSIONARY AND A CANNIbaL ACROSS, LEAVING
NOBGOY ON SIDE1.

*T*

solve (cannibal and missionaries for 3 in a boat and
for 4 cannibals and 4 missionaries)
AMI: ONLY 463 WORDS LEFT.
I HAD TO WIPE EDIT.

(17 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL
AND 4 MISSIONARIES ON SICEI.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES
ON SIDEI.

BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS ON
SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDEI.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES ANU A CANNIBAL ACROSS, LEAVING
A CANNIBAL ON SIDE1.

131



I

BRING A MiSSIONARY BACK, LEAVING THREE CANNIBALS
AND THREE MISSIONARIES. ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEI.

,l *T*

Now I try a new problem - which GPS can't solve.4

solve (how big a boat do you need for 4 cannibals
and 4 missionaries)
(DONT KNOW HOW)

(start :bind conditions to (flipq solve (- for -)
(solve cannibal and missionary for n in a boat and
for -))

START

If I say (HOW BIG A BOAT DOES IT TARE FOR ...), CONDITIONS

will be bourd to (SOLVE CANNIBAL AND MISSIONARY FOR N IN A BOAT

AND FOR ...).

(tell start, return with (prog (n)
setq n 1.
loop if (valueof subst n ' n conditions) then

(return append '(a boat that can carry) list n) end,
increment n, go loop))
START

This advice will cause START to loop, calling SOLVE for

different values of N. Now GPS can solve the problem.

solve (how big a boat do you need for 4 cannibals and

4 missionaries)

(THREE MOVES CONSIDERED)

MAKE: ONLY 382 WORDS LEFT.
I HAD TO WIPE EDIT.

(72 MOVES CONSIDERED)

(17 MOVES CONSIDERED)

132

N -! . 1 " 7



BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL
AND 4 MISSIONARIES ON SIDE1.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRINC TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES
ON SIDEl.

BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS ON
SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDEl.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS,
LEAVING A CANNIBAL ON SIDEI.

BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS
AND THREE MISSIONARIES ON SIDE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEI.

(A BOAT THAT CAN CARRY 3)

GPS considered three moves with a boat that could only carry

1, 72 moves with a boat that could carry 2, and found the answer

with a boat that can carry 3.

Now I am going to introduce a new Eupemissionary - a tarzan,

who cannot be eaten, although he can help to outnumber the

cannibals and protect the missionaries, and can also row the

boat across.

(change eaten expr (insert (x -1) after (m . -1)))
(EATEN EXPR)

I use X to stand for the new element.

133

- - " . . . .. l aI l l i i l l i .i



(change start
(nsert (tarzn . x) (tarzans x) after (missional• m)) '
(replace either nI with (- for (repeat 2 $1 I

(numberp) $1) -))
(replace either - either nl with

((repeat m (repeat (, car 1) (/r m 2))))))
(START CANNIBAL)

Instead of saying SOLVE (CANNIBAL FOR N MISSIONARIES AND

N CANNIBALS) I now say SOLVE (CANNIBAL FOR N MISSIONARIES

14 CANNIBALS P TARZANS). Actually this advice modification to

START will allow it to handle any number of different types of

people.

(change start after (lisert (x . tarzan) after

(m . missionar) )))

(START AFTER)

(change make (insert (x . tarzan) after (m
missionary )))
(MAKE CANNIBAL)

Now I try it out. Note that since I don't tell it how biq

a boat to use, GPS assumes a two man boat.

solve (cannibal and missionary problem for 3
cannibals, 2 missionaries, I tarzan)

BRING TWO CANNIBALS ACROSS
SIDEI: A CANNIBAL, TWO MISSIONARIES, AND A TARZAN
SIDE2: TWO CANNIBALS

BRING A CANNIBAL BACK
SIDEI: TWO CANNIBALS, TWO MISSIONARIES, AND A TARZAN
SIDE2: A CANNIBAL

BRING TWO CANNIBALS ACROSS
SIDEI: TWO MISSIONARIES AND A TARZAN
SIDE?: THREE CANNIBALS

BRING A CANNIBAL BACK
SIDEI: A CANNI3AL, TWO AISSIONARIES, AND A TARZAN
SIDE2: TWO CANNIBALS

BRING A CANNIBAL AND A MISSIONARY ACROSS
SIDEI: A MISSIONARY AND A TARZAN
SIDE2: THREE CANNIBALS AND A MISSIONARY

IJ4



BRING A CANNIBAL AND A TARZAN ACROSS
SIDEI: TWO MISSIONARIES
SIDE2: THREE CANKIBALS AND A TARZAN

BRING A CANNIBAL BACK
SIDEI: A CANNIBAL AND TWO MISSIONARIES
SIDE2: A TARZAN AND TWO CANNIBALS

BRING A CANNIBAL AND A MISSIG!ARY ACROSS
SIDEI: A MISSIONARY
SIDE2: THREE CANNIBALS, A MISSIONARY, AND A TARZAN

CRING TWO MISSIONARIES ACROSS
SIDEI: A CANNIBAL
SIDL2: TWO MISSIONARIES, A TARZAN, AND TWO CANNIBALS

BRING A MISSIONARY BACK
SOFI: A MISSIONARY AND A CANNIBAL
SIDE2: A MISSIONARY, A TARZAN. AND TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEI: NOBODY
SIDE2: TWO MISSIONARIES, A TARZAN, AND THREE

CANNIBALS

(11 MOVES CONSIDERED)

AGREE: ONLY 493 WORDS LEFT.
I HAD TO WIPE EDIT.
BRiNG TWO CANNIBALS ACROSS, LEAVING A CANNIBAL, TWO
MISSIONARIES, AND A TARZAN ON SIDEI.

eRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE2,

BRING TWO CANNIBALS ACROSS, LEAVING TWO MISSIONARIES
AND A TARZAN ON SIDE1.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING A CANNIBAL AND. A TARZAN ACROSS, LEAVING TWO
MISSIONARIES ON SIDEl.

BRING A CANNIBAL BACK, LEAPING A TARZAN AND TWO
CANNIBALS ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
ON SIDEI.

BRING A MISSIONARY BACK, LEAVING A MISSIONARY, A
TARZAN, AND TWO CANNIBALS ON SIDE?.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEl.

*T*

135



The solution is only nine moves long, the minimum to

transfer six people, as opposed to the eleven without Tartan's.

alp.

Now I give it a trivial problem -nobody can get eaten,

solve (cannibal and missionaries for 3 cannibals$
3 tarzanh)

(9 MOVES CONSIDERED)[~IBRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL AND
BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE?.

BRING TWO CANNIBALS ACROSS, LEAVING THREE TARZANS
ON SIDEI. -

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDE2.

BRING A CANNIBAL AND A TARZAN ACROSS, LEAVING TWO
TARZANS ON SIDEI.

BRING A CANNIBAL BACK, LEAVING A TARZAN AND TWO
CANNIBALS ON SIDE2.

A RING A CANNIBAL AND A TARZAN ACRCSS, LEAVING-A
TARZAN ON SIDEI.

BRING A CANNIBAL BACK, LEAVING TWO TARZANS AND TWO
CANNIBALS ON SIDE2.

BRING A CANNIBAL AND A TARZAN ACROSS, LEAVING
NOBODY ON SICEl.

And this problem combining all of the things I have told the

problem solver.

solve (how big aboat do you need for 3 missionaries,
1 tarzan, 4 cannibals)

(4 MOVES CONSIDERFD)

(30 MOVES CONSIDERED)

136

- - ~ W. -- I J. POW4M



BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
TWO MISSIONARIES, A TARZAN, AND THREE CANNIBALS
ON SIDEI.

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON SIDE2.

BRING A TARZAN AND A CANNIBAL ACROSS, LEAVING THREE
MISSIONARIIS AND TWO CANNIBALS ON SIDEI.

BRING A TARZAN BACK. LEAVING TWO CANNIBALS ON SIDE2.

BRING A TARZAN AND A MISSIONARY ACROSS, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDE!.

BRING A MISSIONARY BACK, LEAVING A TARZAN AND TWO
CANNIBALS ON SIDE2.

BRING TWO CANNIBALS ACROSS. LEAVING THREE MISSIONARIES
ON SIDEI.

BRING A CANNIBAL BALk. LEAVING THREE CANNIBALS AND
A tARIAN ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDEI.

BRING A MISSIONARY AND A CANNIBAL BACK. LEAVING A
MISSIONARY. A TARIAN. AND TWO CANNIBALS ON SIDEU.

BRING TOO MISSIONARIES ACROSS. LEAVING IWO CANNIBALS
ON sIIJII.

BRING A TARIAN BACK, LEAVING THREE MISSIONARIES
AND TWO CANNIBALS ON SIDEZ.

BRING A TARIAN AND A CANNIBAL ACROSS. LEAVING A
C"NNIBAL ON SIDEI.

BRING A TARZAN BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A TAR;A4 AND A CANNIBAL ACROSS, LEAVING NOBODY
ON SI1tEI.

(A BOAT THAT CAN CARRY 2)

137



CHAPTER 7

C :: IMPROVING !ILOT

PILOT is the result of an evolutionary process extending
over more than two years. However, there is no reason to assume
that this process has terminated, nor that PILOT has reached
some sort of ultimate state. This chapter discusses ways that

'PILOT might be improved at several levels, ranging from specific
suggestions for modifying the function ADVISE, through changes
in FLIP and the translator, tc .rxtensions of the subjective
model for programming. However, the significance of PILOT lies
not in any speciic characteristics or features it possesses,
but rather I at it demonstrates that it is possible to get
computers to participate in, and cooperate with, research efforts
in programming to a much greater extent than is now being done.

Questions of Efficiency

The heart of the PI':OT system is the function ADVISE,

which executes a procedure along with its advice. In attempting

to evaluate PILOT's efficiency, we must compare programs written

using PILOT, i.e., in which ADVISE is called to interpret pro-

cedures, with those written directly in LISP. The same program

written in machine language would probably be more efficient.

But, there is always a tradeoff in efficiency between generality

and specificity. Presumably the ease of programming compensates

for this factor, or you would not use the more general system.

The question, therefore, is: assuming your program is to

-"e written in LISP, how much does it cost you to do it within

PILOT. i.e., using ADVISE? This will then have to be weighed

against the conveniences of being able to make changes imed-

lately by advising.

139

NmI Imp V



If the program is to be run interpretively, as opposed to

compiled, the cost is practically zero. This is because ADVISE

and its satellite functions are all compiled. Therefore, the

overhead involved in calling ADVISE is small compared with the

time required to interpret the pieces of advice. These would

have to be interpreted in some form anyway, either as advice.

or as a part of the uefinition of the function. For example.

suppose you wish to modify the function PROGRESS in the example

in Chapter 6 so that whenever the cannibals would eat the mission-

aries, PROGRESS returns NIL. Then somewhcre, either in the

definition of PROGRESS or as a piece of adi'ice, there must be

some S-expression representation of this computation, in the

form of a conditional with appropriate clauses. This conditional

must at some point be interpreted for PROGRESS to wcrk as in-

tended. If PROGRESS is uncompiled, the difference between

interpreting this modification as advice, and including it in

the function definition directly, is small.

6- ror completeness, I include here computation times for

some of the experimants in Chapters 5 and 6. These are for

programs run interpretively, using ADVISE. These figures do

It not include time spent in garbage collection,

Rema r ks Time (seconds)

IChapter 5 Dedictivi Question-Answering System)

K Questions (AT PENCIL COUNTY)

no modifications 18.2

questions not containing variables are
answered only once 14.2

with English output 27.0

* Although PILOT operates in a time-shared environment, these
times are actual CPU times as computed by interrogating an
internal clock.

140



Remark Time (seconds)

Quetion: (AT PENCIL Y) - corpus permits endless
deduction

limit on number of recursive calls to SOLUTIONi
set at 11 answer (AT PENCIL DESK); 3 questions
considered 3.5

limt set at 2; answer ((AT PENCIL DESK) (AT
PENCIL HOME)): 11 questions considered 11.5

limit set at 3, answer ((AT PENCIL DESK) (AT
PENCIL HOME) (AT PENCIL COL1TY): 39 questions 41.7

no limit -- if question is repeated, return all

answers found so far; 17 questions considered 14.2

[Ch pter 6t General Problem Solver)

Problem: Cannibal and Missionary

No heuristic, 68 moves 14.5

Heuristic: bring two across, one back; 35 moves 8.9

Heuristic: do not attempt moves considered.
previously; 20 moves 7.5

If the user wishes to compile his programs, the question of

efficiency becom.es more serious. Although each individual piece

of advice can be compiled, the overheid involved in calling

ADVISE is now proportionally larger. It might even be desirable

to include in PILOT a feature for collapsing advice into the

function definition prior to compilation, so that it would then

run as one compiled subroutine, without calling ADVISE. However,

if It became necessary to make modifications subsequent to cm-

pilation, the user must either revert to calling ADVISE wit'i the

funKtion, or else save its symbolic definition and recompile.

In addition, eliminating the call to ADVISE means that HISTORY

would not record an entry for this function.

The question here is basically one of open subroutines

versus nlosed subroutines. The principal advantage of using

closed subroutines for making modifications, as implemented with

141

I I I | I .- i



ADVISE, is that it is eisy to locate individual pieces of advice,

and to change them, perhaps even by advising. It is also easier

to contirue making modifications after the function is compiled.

This may be outweighed by considerations of speed. Probably both

options should be included in future systems - provided that

space is not an important factor. The user could then allow the

particulars of the situation dictate his choice on which method

to use.

This entire discussion has compared the efficiency of

1.nterface modifications performed with ADVISE with those per-

formed editing the LISP function. There are, modifications

which do not properly fall under the heading of interface mod-

ifications, even though they could be performed that way. For

example, suppose FOO is a function of two argumnents X and Y,

and it is discovered that the order of these arguments has been

reversed in the definition of FOO. It would be possible to

correct this by advising: exchange X and Y before FOO was entered.

Obviously this is much less efficient than correcting the

function definition. The previous discussion compares the

advfce method with editing POO by inserting a computation which

exchanged X and Y, and not with reversing the order of the

drguments in the definition. Comparing advising with the optimal

method Of modifying would bring us into a discussion of what is

tha most efficient program for a particular task. I am not

prepared to discuss this latter question.

Improving FLIP

FLIP is also the result of an evolutionary process. Since

it forms the basis for the translating and editing functions,

and is also used by the programmer directly, it is worthwhile

142

2M 84 WOO



to concentrate efforts on improving it. In particular, two

additional semantic features in FLIP would bc most useful. These

are the multiple workspace and the depth search pattpzn.

Multiple Workspace

In most pattern-driven languages, the user matches a piece

of data against a pattern. However, occasionally you want to

match a piece of data against another piece of data, according

to some pattern. For example, A .atches B if whenever A is of

the form (x y z ...),'B is of the form ($1 x $1 y $1 z ... ).

Determining a match of this type involves a back and forth pro-

cess that cannot easily be expressed except in programs written

specifically for this purpose.

More generally, suppose it is necessary to process two lists

using FLIP-type of operations, where the processing must go on

simultaneously because the processing of one list affects the

other. For example, suppose you wanted to find the longest

common substring of two strings. This type of problem can best

be solve" by allowing two workspaces, instead of only one.

Some syntactic and semantic problems remain to be solved.

The user must be able to indicate under wh t conditions to

abandon processing one list and go to the 4ther - since nothing

can really occur simuttaneously. It may 4Iso be necessary to

specify more than one pattern.

Depth Search Pattern

When the user writes ($ A $ D $), he intends to find the

first A followed by the first D, regardless of where it appears.

In COMIT, this presents no difficulty because everything is at

143

Po o .Mg S I



i-

the same level. However, in LISP this pattern will not match

with the list (X Y Z (E T A I O N) X Y Z (S H R D L U) X Y Z).

To match with this list, one must use the pattern

CS( C A$) $ (SD $) $ . However, this latter pattern will not

match with the first list. How can the user specify a match

that is to~occur at any depth?

This problem is of obvious importance in searching list

structures. The user may not know at what depth a particular

structure occurs, even though he may be able to specify a trans-
formation on it. The depth search pattern would allow him to

write ($$ $i 2 2 $M) to search for three repeated elements, at
any depth as indicated by the "00. The foKAat (1 2 -1) would

then transform the structure, deleting the two repetitions.

Zmprovina the Language Syntax

One obvious place to improve PILOT is in the translatr.

This device is a collection of transformitions, each of which is

irrevocable, each of which operates with no information concern-

'.ng the others. Often, a translation will succeed or fail

depending on the chance order to which two transformations are

applied. In the current translator, this situation is avoided

by having the user segment parts of the input string with par-

entheses whenever there is a danger of misinterpretation.

However, this quickly becomes cumbersome. Moreover, it places

the burden on the user, instead of on the system, where it

should be.

13,41

Bobrow has shown that in a limited semantic context,

that of algebra story problems, it is possible to relax syntactic

conventions considerably. The incut to his STUDENT program is

144

!-



in the form of natural language, which the program "understands"

in the context of algebra story problens.

Since the inputs to PILOT -oPresent computations, it should

sim-.ly be possible to relax the syntactic restrictions. If

an input string does not parse, ie., if it does not translate

into a recognizable computation - in our case a LISP function

with its arquments - then c learly something .s wrong. Somewhere

a transformation was applied that should not have been. Before

the system complains, we should h,,e it back up and "undo" some

of the transformac.':ns it executed. By this Limple device,

many ambiguities could he resolved.

For ixamplo, consider the input (TELL FOO TO INCREMENT X AND

(PRINT Y)). The user intends this piece of advice to consist

of two operations: incrementing the variable x and printing the

value of y. However, this will translate into (TELL FOO TO

INCREMENT (AND X (PRINT Y))), at which point the system complains.

This is because the AND transformation, in the sense of

(A AND B OR C), operated before the INCREIIENT transformation.

This AND, however, in intended to be the AND in the

(TO ... AND ... AND ...) transformation. But, it is not recog-

nized because INCREMENT has not yet operated.

Of course, this situation could be rectified by having

INCREMENT operate first, perhaps by establishing a precedence on

transformations. However, us the number of transformatio.is used

in the translator increases, the number of words used in two

or more different contexts, e.g., AND, will also increase. Unless

the user is constrained to writing AND1 and AND2 to indicate the

two meanings of AND, some device for tentatively trying a

145



transformation becomes a necessity.

Ii

/ Extending the Language Semanticsr.

Programming languages are designed to allow the programmer

to express the operations he wants the computer to perform in

a simple and concise fashion. However, often the programmer may

not know precisely what operations he wants the computer to

perform. It is here that these languages become inadequate,

for they presuppose knowledge on the part of the human, and just

facilitate transmission of this information to the computer.

Obviously when the user approaches the computer, he has
some problem in mind, but it may be formulated only in terms of

the results he wants achieved, and perhaps some of the goals

along the way. His problem is thus not only of transmitting

goals, but also one of defining more precisely the process to

achieve these goals.

Newell 391 gives a spectrum of increasing specification as

it goes on in the human, which we can roughly picture as follows:

goal -- idea of solution-edetail of solution-.computer

At the far left, the human already has some way of recognizing

the adequacy and desirability of results. Clearly several prior

stages of ill-definition exist even further to the left. How-

ever, a long way also exists toward the right before the pro-

cedures for solving the problem are well enough defined to be

communicated to a computer using current progr"mming languages.

146

No V



I.

PILOT represents one approach to this problem. It leaves

the language essentially unchangedl it is still a language of

procedure, i.e., of detailed instruction. However, the human

and the computar interact with very short delays, of the order

of seconds. The language is highly incremental, so that the

human can introduce new semantic as well as syntactic features,

and it provides some way of talking about the changes and modi-

fications one wishes to effect. Using PILOT, the human, still

somewhat vague about just how he wants to proceed, operates ex-

perimentally. He constructs parts of programs that seem clearly

needed, tries them out, organizes them into bigger routines, etc.

In short, he finesses the restrictive effects of a language that

demands explicit detail in favor of trial, rapid feedback, and

correctiokl.

However, this is not the only approach that can be taken

to this problem. An alternative one would be to try to change

the language, and move the communication boundary in the diagram

above from the right side of the place marked "detail of solution

to the left side. This approach is the "planning language

approach" of Newell. 391  It attempts to understand the nature

of communication between man and computer when he has only an

idea of a solution. How can man and computers communicate

before the man has worked out exactly what he wants to do?

The solutiont communication takes place in the language of plans.

The man formulates only a general plan. The computer fills in

the details and carries them out.

The situation is similar when we use high level languages

for macnine coding. The computer "fills in the details" of

the program. However, while translating from ALGOL or FORTRAN

147

__________________________________W-_.' .,



to machine language is algorithmic, to interpret a language of

plans is, to some extent, to solve problems. That is, Othe

problem ... in developing a system that will take as input a
linguistic expression for a plan is essentially one of artificial

.39)intelligence.' The real problems for the computer system

are attaining all the unattained goals that comprise the plan.
To do this the system muit clearly be able to construct its

own subgoals, and perhaps even be able to plan itself. This in

far from what goes on inside of the FORTRAN compiler or LISP

interpreter.

I feel that this approach complements the one taken by

PILOT, and should certainly be explored. Any facility included

in PILOT for interpreting plans would greatly aid the user.

Since developing a *planning language* seems to be an artificial

intelligence problem, perhapp the current PILOT system would be

helpful for this purpose. In this way, we would be using PILOT

to refine and improve itself.

Improving the Theory

The discussion of programming from the standpoint of block

diagrams presented in Chapter 3 gives little more than a

framework for introducing the concepts essential to PILOT. Much

wtrk remains to be done on defining more precisely what is meant

by a procedure, end similarly, in what wuys does one modify

procedures. For example, we might start by attempting to for-

malize the block diagram by ,!king about its primitivd elements

and the allowable combinators.

Advances in this area would result in an immediate improve-

ment to PILOT and similar systems. However, perhaps of even

148



-I

;reater significance, is the influence such work would have on

the design and development of future programming languages. If

ie could obtain a really good formalization of the ideas dis-

cussed in this thesis, then it would be possible to construct

languages and systems which would drastically simplify the task

6f programming. And until such time as these ideas are formal-

ized, systems such as PILOT will only be a potpourri of ad hoc,

although useful, subroutines.

Concluding Remarks

This thesis has described an approach to the solution of

hard problems by computers. Basically, this approach, actually

A philosophy, is: let the comput,,r do it. Let the computer do

anything and everything for you that is possible. The extra

iffort involved in automating even difficult processes will be

returned in the freedom you receive to concern yourself with

the problem.

PILOT is merely an example of this approach. If we were

to implement a similar system on another machine, in another

programming language, the resemblance to PILOT probably would

be only superficial, although the concepts of procedures,

essential variables, and advising might still be useful. Now-

ever, the significance of PILOT is that it demonstrates the

teasability and desirability of this approach. It clearly shows

that it is possible to get computers to participate in, and

.ooperate with, research efforts in programming to a much greater

*xtent than is now being done. I think we are far from developing

* programming system that can truly be called symbiotic. However,

1WT is a step in the right direction.

149



APPENDIX 1

SYMBOLIC DIFFERENTIATION IN LISP

Suppose that s is an expression to be differentiated with

:respect to the variable v, where a is represented in Polish prefix

form, e.g., "3xj + 3yz + 3xz" is represented as (PLUS (TIMES 3 X Y)

|(TIMES 3 Y Z) (TIMES 3 X Z)). The following function, DIFF, will

differentiate s with respect to v.

'diff~s;vj - I atomIs)--teq s;v---&l; TRUZ--O

!eqtflsl;PLUSJ--cons(PLUSimaplist(rls]I A [(x];difflfjxljvll]]h

eqlftsl;TIMES]---cons(PLUSmaplistlrlslI k [(Xl;cons[TIMES;
consudifflftx];vl;delete[ftx|lr(sjj))I I *

To make DI? completely general, we must add a fourth clause:

TRLE-cons[PLUS;map2[sublis(pair fegradientoftsl;rls]ju
fr.gradientef[I};r[slo A I[x~yl;list[TIMES;f x!;diff
IftyJ;vlJlIj

This clause allows us to introduce new operations to DIFP

by making their gradients available to i., via the function

GRADIENT. The argument of GRADIENT is the name of an operation,

e.g., SIN, POWER, ARCTAN, etc., and its value is the gradient of

* f(s) denotes the first element ofs and rnsj the rest of a,
in other words, the-functions CAR an-a CDRi the valtie of delete
|xjyj is the list X with the element x deleted; map2 is similar
to maplist but operates bn two lists'Tn parallel; ." denotes
function composition.

151

, a- a ,i I9'..~ I I



that operation. GRADIENT thus plays the role of a table of

derivatives.

The form of each gradient is a pair of lists of equal length

* the first list being a list of variables, and the second list the

partial derivatives with respect to those variables. For example
Y

if we represent X by (POWER X Y), the gradient of POWER is ((X Y

((TIMES Y (POWER X (PLUS Y -1))) (TIMES (LOG X) (POWER X Y)))).

This gays that the derivative of XY with respect to X is XY-1,

with respect to Y, XYlog X. Similarly, the gradient of SIN would,

be (IX, ((COS X))), etc.

If we restrict PLUS and TIMES to be binary operations, i.e.,

represent 3xy + 3yz + 3xz as (PLUS (TIlMES 3 X Y) (PLUS

(TIMES 3 Y Z) (TIMES 3 X Z))), then the gradient 'of PLUS is

((X Y) (1 1)), and the gradient of TIMES is ((X Y) (Y X)).. In

this case, the definition of DIFF can be written simply as:

difflstvJ I [atomis] 1[eqs;vj-- 11 TRUE-.0

TRUE-. cons[PLUSmapIsublis(pair(fogradi )nt f(s] ;r [s]I
frosradientefls]; ris]; J% [jx;y;list TIMESfjxJ,
diffif[ylJvJ)JI I

152

:i!.



APPENDIX 2

USING PILOT

The PILOT system is a collection of useful functions centered

around the concept of advising, and the function ADVISE. This

function is thp only one crucial to the operation of PILOT. All

of the other functions merely make it easier for the user to

perform modifications. In this sense, these functions are not

essential to the operation of PILOT, although it is difficult to

see how PILOT would be useful, much less symbiotic, if these

:unctions, or similar ones, were not available. This is parti-

cularly true with the translation scheme displayed in Chapters

5 and 6. The interface between PILOT and the user may and should

be tailored to meet his own needs and desires. However, since

the configuration and conventions I have found to be useful may

provide a convenient starting point, I shall describe them in

detail here. I must re-enyhasize that this configuration, and

thest particular conventions, were adopted by me because they

seemed useful and intuitive to me. I make no attempt to justify

them, but merely present them to be taken at their face value.

SYSTLM

Normally, when a person uses LISP, he directs his requests

to the EVALOUOTE operation. Computations are specified by

giving this operator a p.ir consisting of a function and its

arguments. EVALQUOTE evaluates this pair, types its value, and

then awaits the next request.

153

, J. I I I I l~.



To talh to PILOT, the user gives EVALQUOTE the pair "SYSTEM

This calls SYSTEM, the top level function of PILOT, which is a funi

tion of no arguments. SYSTEM plays a role in PILOT similar to tha

cZ EVALQUOTE, It accepts pairs and evaluates them in much the sami

fashion as EVALQUOTE. In fact, if the user specifies a function

name and its arguments, the behavior of the two systems, PILOT and

LISP itself, is indistinguishable. The user therefore could do ali

of his work while inside SYSTEM, although provision is made for

exiting by typing "ok." In this case, SYSTEM returns the value

NIL, and the user is back talking tc EVALQUOTE, or wherever SYSTEM'

was called from.

The reason for introducing the function SYSTEM, is that the

action of SYSTEM can be modified by advice. In fact, the construc-

tion of SYSTEM is designed for easy modification. The procedures

that read and evaluate the EVALQUOTE pair are separated ir.to two

subfunctions. SYSTEM reads the first member of the pair, and calls

SYSI, which reads the second member of the pair. SYSl calle SYS2,

which then evaluates the pair. This construction makes it easy

to *drive a wedge* between SYSTEM and SYSi, or SYSI and SYS2, and
r

radically change the operation of the system.

What I have done in the current PILOT system is to advise

SYSI, which has as its input the first member of the pair, and

normally reads the second member giving both to SYS2, that when

its argument is nonatomic, instead of reading the second member

of the pair ind going to SYS2, it should instead call the

function DO. Thus if the.user types "CAR %(A))" (two inputs),

SYSTEM will type *A,* having gone through the normal flow in

SYSI and SYS2. But if the user types (TELL FOO IF X IS LESS THAN

r 4 . , ... -- 154



Y TiEN QUIT) (one input), this expression will be given as input

to the function DO, and SYS2 will not be entered.

It is the task of DO to uctermine and perform the operation

bpecified by this input. DO uoes this by calling the function

TRANSLATE, which transforms the input list using a sequence of

FLIP transformations.

If all goes well, the transformed lst, the value of

TRANSLATE, will consist of the name of a function and its argu-

ments. In this 2ase, tAe first atom wil be a special symbol

"$." DO then treats the second atom as the name of a function,

and the rest of the list as argumenta. If the first atom is not

"$," DO prints out "I DONT UNDERSTAND," followeu by the offending

list, which may have beon partially transformed.

TRANSLATE, the function which does the translation, is also

conceptually very simple. It obtains a list of rules for the

'translation process from the property list of the atom TRANSLATE,

under the property RULES. Thus these rules are not intrinsic in

the system, in fact, initially there are none, and the user can

add them readily. TRANSLATE then calls p FLIP function TRANSFr'!,

giving it the rules and the input list. It is this latter

function which does most of the work in translating. TRANSLATE

also calls a function PARSE.

The entire structure of SYSTEM and its satellite functions

is shown in Figure 5. The remainder of the appendix is devoted

to describing the action of TRANSLATE, and the TRANSLATE RULES,

in greater detail.

155

_______________ I I



F:A
1-1

Laa

-:I z~t l

ULJ6

-cm-

dcU

azo

*~~#A 0)

156



TRANSLATE

TRANSLATE is designed to allus the user to specify an opera-

tion in what looks like a sentence, interspersed perhaps with

some LISP expressions. The translation process operates by

collapsing sections of this sentence into LISP computations until,

if successful, all that is left is a single computation. In

this case, the form of the list will be ($ function-name function

arguments). For example, if the user wishes to modify the

furction FOO so that after it is evaluated, if its VALUE is not

a member of the list x, or if it is greater than y, P0 should

return with twice its VALUE, he might type (TELL POO AFTER IF

VALUE IS NOT A MEMBER OF X OR VALUE IS GREATER THAN Y THEN RETURN

WITH (TIMES 2 VALUE)). This becomes (TELL POO AFTER IF (NULL

(MEMBER VALUE X)) OR VALUE IS GREATER THAN Y THEN RETURN WITH

(TIMES 2 VALUE)), and then (TELL PO0 AFTER IF (NULL (MEMBER VALUE

X)) OR (GREATERP VALUE Y) THEN RETURN WITH (TTMES 2 VALUE)), and

then (TELL F0 AFTER IF (OR (NULL (MEMBER VALUE X)) (GREATERP

VALUE Y)) THEN RETURN WITH (TIMES 2 VALUE)), and then (TELL Foe

AFTER IF (OR (NULL (MEMBER VALUE X)) (GREATERP VALUE Y)) THEN

(LIST (TIMES 2 VALUE))), and then (TELL Fo AFTER (COND ((OR

(NULL (MEMBER VALUE X)) (GREATERP VALUE Y)) (LIST (TIMES 2 VALUE)))

(T NIL))), and finally ($ SYSTEM1 POO AFTER (COND ((OR NULL

(MEMBER VALUE X)) (GREATERP VALUE Y)) (LIST (TIMES 2 VALUE)))

(T NIL))).

If the user had typed any of the intermediate expressions as

input directly, the end result would have been the same. If he

added a rule which transformed (... TWICE xxx ...) into (TIMES 2

xxx), he could have written (TELL POO AFTER IF VALUE IS NOT A

MEMBER OF X OR VALUE IS GREATER THAN Y THEN RETURN WITH TWICE

VALUE).

157

I t i I I I I I I |



II

i:lere are two processes that take place inside of TRANSLATE.

The major one, of course, is the transformation of the input list

according to TRhNSLATE RULES. However, since TRANSLATE is called

frcn inside of these rules, at various levels, to perform

translations on parts of the input list, a parsing feature has

been added so that where the user wishes to express a LISP com-

putationj because he has not included a translation rule that

will handle it, he can do so with a minimum of parentheses. I

shall describe thib operation first because it is fairly simple.

PARSE is a function which utilizes information about the

number of rguments of a function is order to insert pirentheses

in an otherwise unstructured list. For example, PARSE transforms

CONS CAR X CDR Y) into (CONS (CAR X) (CDR )). PARSE has no

effect on lists which do not begin with function names, or for

other reasons are not appropriate for parsing, e.g., they are

already parsed. Fer those lists which do look like they should

parse, but 6o not, PARSE gives appropriate errors. The appli-

cation of parsing permits a vast reduction in the number of

parentheses the user must employ, and greatly increases the

readability (and writeability) of LISP expressions. Since PARSE

is called from TRANSLATE, any expression which will normally be

translated will also be parsed. Thus, in the previous example,

the user could write (TELL FOO AFTER IF (OR NULL MEWBER VALUE X

GREATERP X Y) THEN (LIST TIMES 2 VALUE)), and the end result would

be the same.

TPANSLATE RULES

TRANSLATE makes use of a FLIP function TRANSFORM to trans-

form the input list. The input to TRANSFORM is an item to be

transformed and a list of rules. Each rule consists of three

158

-. w

., , p.ne. . . . & l . . ' . . -... JI*~~**



t

parts, a pattern for matching, an (optional) format for con-

structing, and an (optional) label for transferring control.

If the input matches the pattern, it is transformeC according

to the format, if any, and control goes to the labeled rule,

or alse to the next one. If the input does not match, control

goes to the next rule regardless. TRANSFORM thus acts very much

like 'METEOR, and allows one to write little COMIT-like programs

using FLIP. Exit is achieved either by "dropping off" the end

of the list of rules, or by going to a fictitious label EXIT.

One can also return to the top of the list of rules by going

to TOP. With my translation scheme, this is done after every

successful match-construct operation, except those which produce

the special *$* symbol indicating the transformation process is

complete. For these, the transformation process is terminated

by a call to EXIT.

The philosophy behind each rule has been that where there

is no ambiguity, I should be allowed to suppress parentheses.

For example, there is a rule which transforms (X IS NULL) into

(NULL X), and a rule which transforms (IF xxx THEN yyy ELSE zzz)

into (COND (xxx yyy) (T zzz)). Thus (IF (X IS NULL) THEN yyy

ELSE zzz) becomes (COND ((NULL X) yyy) (T zzz)). However, I can

also write (IF X IS NULL THEN yyy ELSE zzz), because the IF-THEN

rule will not be applied until "X IS NULL" is changed to (NULL X).

I should mention that when the user writes (IF X IS i.ULL

THEN yyy ELSE zzz), instead of (IF (X IS NULL) THEN yyy ELSE zzz),

he is sacrificing computation time for ease of writing and

reading. This is because the translator will try to transform

* (NULL X) in (IF (NULL X) THEN yyy ELSE zzz), while making the

159



IF-THEN transformation. However, for those rules where exit

is normally dchieved, with the special symbol $ at the head

of the list, more meaningful errors will be found and communicated

to the user if he does not use extra parentheses.

For example, I have a rule which transforms (TELL FOO xxx)

into ($ SYSTEM1 FOO BEFORE xxx), a call to one of the advising

( - functions. If I say (TELL FOO ,F X IS NULL THEN QUIT)), this

I~ will become ($ SYSTEM, FOO BEFORE (IFF X IS NULL THEN QUIT)).

Although I intended this piece of advice to be transformed into

a COND, it wasn't becauue it contained IFF, instead of IF. How-

ever, the advice (TELL FOO Ift X IS NULL THEN QUIT) would not

be transformed into a list with a 0V' at the front, and DO would

tell me about the error at this point - instead of LISP telling

me later that IFF was not a bona fide function. At that point,

I would have to figure out where the error came from, why, and

what should have happened, whereas with DO I would know immediately

One further point: occasionally, you must use extra paren-

theses - to indicate precedence. For example, (A AND B OR C) is

transformed into (OR (AND A B) C). To make the AND relationship

be the primary one, one must say (A AND (B OR C)). Normally, this

cannot be avoided, because you have to decide %hich will take

precedence - AND or OR. However, in some cases, by being clever

about the particular translation rule, you can rule out most of

the cases where extra parentheses would be necessary. For

example, I have a transformation which takes something of the

form (DO xxx) into (PROG2 xxx NIL). This is for ADVICE which

* This could be avoided by having TRANSLATE recognize when an
expression had been translated previously.

160

4 .. o..



should be executed, i.e., the xxx, but not affect the flow of

computation, hence the NIL. However, if you type (DO IF X IS

NULL THEN ... ), you would get ((PROG2 IF NIL) (NULL X) THEN ...),

which is nonsense. But, if this rule required xxx to be non-

atomic, it would not operate in this case until after the IF

rule had operated. Thus, you obtain the correct result: (PROG2

(COND ((NULL X) ...).

Of course, with a more sophisticated parsing scheme, one

could back up from incorrect transformations, and much of this

would not be necessary. However, TRANSLATE is extremely ad hoc,

and it is interesting that it can do as well as it does.

I shall now describe each individual rule. For reference,

a complete list is contained in Appendix 3. In this discussion

iulcs marked with "'* differ from the corresponding ones actually

in th system as listed in Appendix 3, although in all cases

both perform identical operations. The difference !s usually a

question of efficiency versus intelligibility. The rules in

the system are more efficient, their counterparts here more

understandable.

SYSTEM1 (SYSI (CONDS(ATOM X) NIL)T (LIST (PRINT (DO X))))) BEFORE)

This is the initial modification to SYSl that causes it to

call DO in the event its input is nonatomic. SYSTEJl, as

described earlier, has three argumentst the name of the function

to be irodified, here SYSl, the expression that constitutes the

advice, which is the COND, and the place where the advice is to

be inserted - BEFORE.

161

W.I-0"' r b-r 0j -



i4

ADD (((TRANSLATE SI AS (EITHER
($ / (NOT ATOM))
(5)) ) ($ ADD (2 (EITHER

JI)) )TRANSLATE RULES) EXIT) TRANSLATE RULES)

This input adds the first translation rule to tLe property

list of TRANSLATE under the property RULES. The rule is ((TRANS-

LATE $1 AS ... EXIT) and transforms an input such as (TRANSLATE

xxx AS yyy) into ($ ADD (xxx yyy TOP) TRANSLATE RULES). If the

user wishes to specify a label for transfer if the rule matches,

he can say (TRANSLATE xxx as yyy FCC) which is transformed into

(0 ADD (xxx yyy FOO) TRANSLATE RULES). This rule is a device to

enable one to add other rules without calling ADD specifically.

Note that if this rule matches, no further transformations occur,

i.e., if one says (TRANSLATE xxx AS yyy), it becomes ($ ADD etc..)

and an exit occurs, as specified by the label EXIT.

(TRANSLATE
(TELL $1 (EITHER

(FIRST)
C, (Si / ATOM) FIRST)

/ H ) i )ATOM))
II

AS
(S EITHER

VSYSTEM3)
SYSTEM).
SYSTEMI)

I, (SYSTEMI)) 2 (- TRANSLATE -1) (EITHER
(i NORMAL))

((' NORMAL))) )) *

This rule has been entered using the (TRANSLATE xxx AS yyy

EXIT) format made possible by the previous rule. Basically, once

the input has been reduced to the form (TELL xxx zzz), (TELL

xxx yyy zzz), (TELL xxx FIRST zzz) or (TELL xxx yyy FIRST zxz),

translation is complete and SYSTEM1 or SYSTEM3 can be called.

162



(TRANSLATE
I.- END (BACKTO BEG) $1 S END --)

AS
(-- (- TRANSLATE -3) -- ))

While it would be possible to make TRANSLATE be completely

recursive and tear apart every list structure looking for some-

V thing recognizable, this seemed to be a slow and infficient

process. In particular it penalizes the user for material al-

ready translated, i.e., legitimate LISP expressions. A problem

arises, however, when it is desirable to have something be trans-

lated that is inside of an expression that itself normally would

not be translated. BEG and END are here introduced as pseudo-

parentheses to finesse this situation. By using BEG and END in

place of parentheses, you can write everything at the same level

so that translation will occur. This particular rule locates

the first END, and then backs up to the first BEG before it,

so that one can nest BEG's and END's.

(TRANSLATE
DO-- O $1 I (NOT ATOM) .- )

AS
(-- (PROG2 (* TRANSLATE 3) NIL) -- ))

Frequently one wishes to perform a LISP computation in

advice without disrupting the normal flow into or cut of the

function in question. Since the ADVICE function will interpret

a non-null value as a signal to bypass the function, this compu-

tation is embedded in the form (PROG2 xxx NIL), where xxx is the

desired computation. PROG2 is a LISP function which evaluates

both its inputs and returns the second one, here NIL. This

rule transforms DO xxx into (PROG2 xxxl NIL), where xxx* is the

translation of xxx. Note that xxx is restricted to be non-

atomic (aee previous discussion, page 161).

163

'"9000



7.7

(TRANSLATE
BIND (EITHER($1 / (ATOH4))
$Mz) TO $1--

AS ( ATTACH (CONS (EITHER

CONS QUOTE 1)
(, TRANSLATE I) ( TRANSLATE 5)) (COOR

HISTORY)

This rule allows the user to create and bind a new variable

to some value; the binding will hold until the current function

is left. This is dore via a call to ATTACH giving it the name of

the variable and its value, and (CDDR HISTORY) which is the

appropriate place to ATTACH it, i.e., just after the function's

name. One can specify the variable name directly or as a result

of a computation.

(TRANSLATE
(-- SAVE $1 on $1 -- )

AS
(-- (SETQ 5 (CONS (a TRASLATE 3) 5)) -- )

This transforms (... SAVE X ON Y ...) into (... (SETQ Y

(CONS X Y)) ...) with appropriate translations.

(TRANSLATE
(--POP --

AS
(.. (SETQ 3 (CD' 3)) --))

The inverse of the above operation.

N/

(TRANSLATE

(-- IGNORE --)
AS

C-- NIL -- ))

164

-- ,~Ile IF F Wr



This rule allows the user to use IGNORE for NIL. IGNORE

has intuitive meaning when used in the context of advice, e.g.,

(IF X IS NULL THEN IGNORE) means if x is null then go on with

the rest of the computation.

(TRANSLATE
(--QUIT--)

AS
(-- (LIST NIL) -))

Similarly for QUIT and (LIST NIL) -- do not enter this

procedure but instead return with NIL.

(TRANSLATE
(X IS $ (EITHERY MEANS)

MEANS)) S)
AS

($ A002 IS PATTERNS (3 (EITHER(SI)

FORMATS (-I(QUOTE TRANSLATE
(IT 2)) (EITHER (QUOTE (m TRANSLATE -1)))

This rule makes it possible to add definitions such as

(X IS GREATER THAN Y MEANS GREATERP), (X IS A NUMBER MEANS

NUMBERP), etc., so that (IF X IS GREATER THAN Y AND Z IS A

NUMBER ...) becomes (IF (GREATERP X Y) AND (NUMBERP Z) ...)

The pattern for each transformation is stored on the property

list of the atom IS under the property PATTERNS. The format

is stored under the property FORMATS. The actual transformation

is handled by the rule belowt

165

d ra - .i..IaI. a I -I.



(TRANSLATE
$1- Si IS (EITHER

(NOT)
--) (EITHER
(- GET IS PATTERNS))

AS
((EITHER

(NULL ((EITHER
(IT -2)
(, GET IS FORMATS.))

((EITHER
GT IS FORMATS)) *

This rule handles the transformations of both (... xxx IS

and (... xxx IS NOT ...). It gets the appropriate patterns from

PATTERNS, and transforms according to formats on IS FORMATS.

(TRANSLATE
(-- TO (EITHER

M($ I / (NOT FUNCTIONP) $))
AS.. (REPEAT 1 $1 AND) $1): AS

(PROG (EITHER
S(,/T 3))
NIL))

(REPEAT (QUOTE (" TRANSLATE 1))
(- TRANSLATE -i ) ))

I... TO xxx AND yyy AND zzz ... ) becmes (... (PROG NIL

XXX yyy ZZz) ...) as a result of this rule. This is so the user

can specify a number of operations in one piece of advice. If

PROG variables are necessary, they can be inserted just after the

TO. The list of PROG variables can be distinguished from a form

because it does not begin with a function. Thus (TO (x y a)

xxx AND yyy AND tzz) becomes (PROG (x y z) xxx' yyy' zzz').

(TRANSLATE
(S / I (NILL) (REPEAT !F $I) (EITHER

(ELSE $I)
(EITHER

(END -)

AS
(-- (COND

1 REPEAT ((- TRANSLATE 2) (- TRANSLATE 4)))
EITHER

166



t { (  TRANSLATE 2 ))) ,
NIL))) ) (EITHERTRNLTE2)

This rule translates IF THEN statements into conditionals.

The form of the statement must be IF $1 THEN $1 IF $i THEN $i etc

terminated either Dy END, or by the end of the list. This is to

help the user catch errors at translation time. Thus (IF POP X

THEN QUIT) becomes (COND ((SETO X (CDR X)) (LIST NIL)) (T NIL)),

but (IF POPP X THEN QUIT) does not translate. Note however that

both (IF (POP X) THEN QUIT), and (IF (POPP X) THEN QUIT) will

eatisfy the IF-THEN rule. At some later point, however, a LISP

error will occur because of POPP.

This rule also allows the user to insert an optional ELSE

clause at the end of the IF-THEN statement. If none appears,

(T NIL) is used.

The appearance of the NILL in $ / / (NILL) causes the

rule to fail if the first IF-THEN is not correct. This is to

avoid partial transformations of IF-THEN clauses inside of a

longer statement, i.e., IF X IS NULL THEN Y IF A THEN B ELSE D

becoming (IF X IS NULL THEN Y (COND (A B) (T D)))

(TRANSLATE
S-- IF $1)

AS
(-- (SYSTEM4 (- TRANSLATE 3))))

Occasionally, if a computation is not NIL, you want to

return with that computation. Essentially, you want to write

(IF xxx THEN xxx). However, this will cause xxx to be evaluated

twice. One finesses this by writing simply (IF xxx), which

167



results in a call to SYSTEM4 which performs the appropriate actic

(TRANSLATE J
AS (  AND (BACK 2) (REPEAT $1 AND) $1 -- )

(-- (AND (REPEAT (QUOTE (- TRANSLATE 1))) (- TRANSL)
-2

This rule handles expressions such as xxx AND yyy AND Xzz

which become (AND xxx' yyy' zzz'). It locates the first AND and

then backs up. There may be scme confusion between this rule

and the rule which handles TO xxx AND yyy ... However, one can

always use BEG and END or parentheses.

(TRANSLATE

(-
" OR (BACK 2) (REPEAT $1 OR) $1 -- )

AS
(.- (OR (REPEAT (QUOTE (- TRANSLATE 1))) (" TRANSLAT

! -2)) -- ))

Similar to above for AND. Note that (A AND 8 OR C) becomes

(OR (AND A B) C), because the AND rule is before the OR rule.

To produce (AND A (OR B C)) one writes (A IND (B OR C)).

(X IS A MEMBER OF Y MEANS MEMBER)

(X IS A NUMBER MEANS NUMBERP)

(X IS (EITHER
AN ATOM)
(ATOMIC)) MEANS ATOM)

(X IS GREATER THAN Y MEANS GREATERP)

(X IS LESS THAN Y MEANS LESSP)

(X IS EQUAL TO Y MEANS EQUAL)

(X IS NULL MEANS NULL)

IS RULES in the system.

168

9~ W 7 "W" loop I IF



(TRANSLATE
(-- RETURN WITH S1 -- )

AS
:(- (LIST (- TRANSLATE -2)) -- ))

If one wishes to return with xxx from a function, the advice

should actually yield (LIST xxx). This rule transforms

... RETURN WITH xxx ...) into 1... (LIST xxxt ...). Thus QUIT

is the same as RETURN WITH NIL.

(TRANSLATE

(DEFINE $1 (EITHER
(FEXPR) ($SET FO0 (QUOTE -1)))
$1 ($SET FO0 (- LENGTH (a CAR -1))))
($SET e0 (QUOTE 0)))) AS -- )

AS
($ DEFLIST (((. CAR (- PUT (a FO0) (- CAR 2)
ARGS)) (LAMBDA

(EITHER

i (L 
A))

(L)) ( TRANSLATE -1))) ) (EITHER
(FEXPR)
(EXPR)
(EXPR)) ))

This rule is to allow the user to avail himself of the

translation process in defining new functions; you can write

(DEFINE FOO AS .... ). If n ,I arguments follow FOO, NIL is

supplied. If (FEXPR) follows FOO, (L A) are used as arguments

and DEFLIST is called with EXPR as its second argument. Other-

ise EXPR is used. The refelrence to PUT in the format puts

the number of arguments in the function being defined onto its

property list so that PARSE can be used even though the function

is not yet defined, e.g., in (DEFlNE MEMBER (X Y) AS IF X IS

EQUAL TO (CAR Y) THEN T ELSE (MEMBER X CDR Y)),.FARSE would

know how many arguments MEMBER had.

169



(TRANSLATE
(-- INCREMENT $1 -- )

AS
C-- (SETQ 3 (ADDI 3)) -- ))

Transforms (... INCREMENT xxx ...) into ( ... (SETQ xxx
I: ~(ADD1 xxx)) .)

(TRANSLATE

(-- (EITHERISEARCHF)
COUNTF)ISEARCHP)
LISTP)
COUNTP)) $$1 $I (NOT ATOM) (EITHER
(s2 $)

AS
(-- (2 3 (- CONS QUOTE 4) HISTORY) -1))

SEARCHF, COUNTF, SEARCHP, LISTP, COLUTP are functions useful

in problem solving. SEARCHP, LISTP, COUNTP all take a list, a

predicate, and an ALIST, as inputs. SEARCHP searches for an

item that satisfies the predicate. LISTP lists all items that

satisfy the predicate. COUNTP counts the number of items that

satirfy the predicate. SEARCHF and COUNTF are similar except

they take FLIP patterns instead of predicates, and therefore

you can express relations between elements in the list. The

ALIST is used for evaluating free variables. Since in the

most frequent use of these functions you specify only the list

and the predicate or pattern, this rule will quote the predicate

or pattern, and supply HISTORY as the ALIST. (LISTF, another

function, is not handled by this rule because it requires an

extra argument that the other functions do not take.) You can

specify an ALIST yourself, in whizh case this rule will not

match.

170

-~~-11 -VT4 -



(TRANSLATE
(-- BREAK $1 -- )

AS
(BREAKI NIL T (ADVICE) (CONS (COND

((EQ (CAADR HISTORY) ' VALUE) (CAADDR HISTORY))
(CAADR HISTORY))) ) (CONS TYTAB (a CONS OUOTE.3)

This rule allows you to insert a BREAK inside of advice.

This is done via a call to the function BREAK1 described earlier.

S3REAK prints as its message the name of the function, which it

obtains from the history list, and the message corresponding to

the $1.

ADD (CHANGE TRANSLATE RULES)

(TRANSLATE
(CHANGE $1 (EITHER

($1 / (ATO ())
(REPEAT ((REPEAT $ $1 (NOT ATOM))~AS

($ EDIT 2 (EITHERLNORMAL))) ((REPEAT ((REPEAT M (/C 1 1)1
TRANSLATE 2)) (IC 1 2))) STOP)) EXIT)))

This rule result allows you to call EDIT giving it a

sequence of changes. You can include items to be translated

in these changes, e.g., (CHANGE FOO (INSERT IF X IS A MEMBER OF

Y THEN QUIT BEFORE SAVE X ON Z)). The request "ADD (CHANGE

TRANSLATE RULES)" serves to label this rule so that other rules

(below) can transfer to this label instead of to TOP or EXIT.

171

• ~ ~ ~ ~ ~ ~ ~ ~ - ,too I I i I ",i i I I



* (TRANSLATE
(TELL $1 (EITHER

(1 M/ ATOM))
-- ) ((EITHER
BEFORE)
AFTER)
INSTEAD OF)) (EITHER(SI)
$ ( ADVICE)) ) (EITHER
$1 / (ATOM))

AS
(S EDIT 2 (EITHER: (1)

1(; NORMAL))) ($SET FO0 (a- (EITHER42)

((- TRANSLATE 1) (BACKTO ADVICE) UPI)) ))
(SET FIE

(-- (EITHER
"-1

(ADVICE ("* (- TRANSLATE 1))))) ) (((EITHER
(i/T 4 1)
INSERT (* (- FIE)) BEFORE (** (- FO0)))
INSERT (** (-FIE)) AFTER ( )

(REPLACE ( (a FO0)) WITH (** (a FIE)) )
STOP))

The CHANGE rule is designed primarily for editig. When

the user wants to insert advice at some point, other than the

beginning or end, or to replace one piece of advice with another,

he uses this rule so that he does not have to specify the entire

editing sequenck. If the user specifies (BEFORE SAVE X ON Y

ADVICE), this becomes (BEFORE (SETQ Y (CONS X Y)) (BACKTO ADVICE)

UPI) (each piece of advice is a list headed by the atom ADVICE).

If the user writes just (BEFORE FOO), EDIT will look for the

label FOO instead of for a piece of advice.

172



(TRANSLATE
(USE (EITHER

4' ($1 FOR S $1)
$ FOR $1)
(1 $1 FOR $1 $1)
$1 $1 FOR $I)
$1 $1U ) (EITHERI {BUT$
--) )

AS
(CHANGE (/T 2 1) (EITHER

NORMAL)
NORMAL)

3 1(SETQ NAME (5" QUOTE (E..HER

I)) (SETQ VAL ($* QUOTE (EITHER
4)
(w NORMAL))
5)
JU: NOIRMALJ) (

NORMAL))) )) (EITHER

(2)
NIL)

This rule facilitates shifting advice from atom to atom and

property to property. The various options are included to allow

the normal mode to be suppressed. The USE instruction may also

have a sequenc3 of changes following it as in (USE xxx yyy BUT

(REPLACE ...) (INSERT ... )). This rule transforms the input into

the format for CHANGE and then goes to that label. The SETQ

NAME and SETQ VAL are instructions for EDIT telling it where to

put the edited list after it is finished.

(TRANSLATE
(-- (EITHER

EITHER
(MAPLIST)
(MAP))

((EITHER
MAPCAR)
MAPC)? $1 (Si1 (NOT EQ FUNCTION)

AS

173



(-- ((EITHER(/T 2 1)
(MAPLIST)
MAP)) (- TRANSLATE 3) (FUNCTION (LAMBDA (X)
EITHER

(U' TRANSLATE (/T 4)))
SUBST (CAR X) X (- TRANSLATE (IT 4))))) ))

) --.))

Frequently, one would like to process a list and perform

some operation.on each member of the list. The function MAPLIST,

for example, has two arguments, a list, and a function. It

constructs a new list in which each element is the result of

applying the function to the corresponding position in the old

list, e.g., (MAPLIST X (FUNCTION (LAMBDA (Y) (ADD1 (CAR Y)))))#

increments each element in a list. This rule is designed to make

it easier to call such functions. It supplies the FUNCTION and

LAMBDA, and also translates tha functional argument. It also

allows the user to specify whether the function is to be applied

to the remainder of the list, as in MAPLIST and MAP (MAP only

differs from MAPLIST in that it does not construct a new list),

or the next element in the remainder of the list, as in MAPCAR

and MAPC. Thus MAPC FOO (PRINT CADR X) becomes MAP FOO (FUNCTION

(LAMBDA (X) (PRINT (CADR (CAR X))))).

(TRANSLATE
(NAME $1 S IN $1 (EITHER

--) )
AS

(CHANGE -2 -1 (FLIPJ$ (- TRANSLATE 3) (BACKTO ADVICE) UPI$
(QUOTE 1) ((QUOTE a) NAMFl (QUOTE -2) 2) (QUOTE -1))) )))

This rule allows you to locate a particular piece of advice

and define it as a function, so that the advice itself may

174

~rS tV ' ~l S /a . a- .,- ..-. 1 . .. aa -- a . e.. i PSSS77-7I *--



k subsequently be advised, This is done by calling EDIT to locate

the advice and replacing it with a call to the new function,

i which is then defined. Thus (NAME FOOl SAVE X ON Y IN FOO)

becomes (CHANGE FOO (FLIP ($ (SETQ Y (CONS X Y)) (BACKTO ADVICE)

UPI $) (1 (- NAMEl -2 FOOl) -1))), and control goes to CHANGE

label. When EDIT is called, NAMEI will define FOOl as the old

advice.

(DEFINE NAME1 (X Y) AS CONS AUVICE DEFINE LIST LIST Y
LIST ' LAMBDA NIL COR UNFLATTEN X)

DEFLIST (((NAMEI (LAMBDA (X Y) (CONS (QUOTE ADVICE) (DEFINE
(LIST (LIST Y (LIST'(QUOTE LAMBDA) NIL (CDR (UNFLATTEN X))

))))))) ) EXPR)

This is the definition of the function NAMEl used in the

above rule. It defines a piece of advice as a function. The

value of NAME1 is (ADVICE name), which will be substituted for

the original piece of aevice.

(TRANSLATE
((EITHER

BEFORE $1)
IAFTER $1)
1$i $10($~1)) --

AS
(TELL (EITHER

1 NORMAL))) DO -- ))

This rule allows you to write (AFTER FKO t INCREMENT X),

instead of (TELL FOG AFTER DO INCREMENT X).

175

*

- "**/'~ ~ ~ r ~-~- *



(CHANGE SYSI (REPLACE PRINT UPI WITH (PROG (Y)
IF (ERSETQ PRINT DO X)
THEN (TERPRI)
IF (PROG2 PRINTRED ' (EDIT OR FORGET IT) SETQ Y IF

(SETQ Y (RDFLX)) IS EQUAL TO ' EDIT THEN (EDIT NIL X NIL)
IF Y IS EQUAL TO ' PILOT THEN-(PROG2 SYSTEM X) IF (TRANSFORM
Y GET ' EDIT - RULES) IS NOT EQUAL TO Y THEN (EDiT NIL X Li
V ' STOP) ELSE Y)

THEN SYSi Y)
ELSE PRINT ' OK)) ))

This operation modifies the original advice on SJl, which

told it to call DO. The intent is to cause the system to allow

the user to correct errors detected inside of DO. If an error

occurs, the value of ERSETQ will be NIL, and (EDIT OR KRGET IT)

is printed. The user can then modify his input, without re-LI
typing the entire str g. The user may type EDIT, to tilize

EDIT ton the input. A ingle editing operation, can be typed

and will be recognized as such because it will be transformed by

EDIT RULES. This editing operation will then be perfo~med. The

user c4n also type PILOT, in which case the system is called

recursively. This allows the user to make modifications, and

return for another attempt at translating the input which caused

the error. This feature of *remembering" the last input if an

error occurs is extremely useful and was suggested by Professor

Minsky during a session aith PILOT. It is illustrated in the

example below.

(x is negative means minusp)
(IS RULES)

cset (print *T*)
•T*

(Pefine abs (n) as

if n is negative then complement of n,
else n)

I DONT UNDERSTAND:
(DEFINE ABS (N) AS IF (MINUSP N) THEN COMPLEMENT OF
N ELSE N)

f ERROR CALLED

(EDIT OR FORGET IT)

176

-I - . ---



pilot (translate (- complement of $1 -) as (- (minus 4)

TRANSLATION: (ADD ((- COMPLEMENT OF SI) (- (MINUS 4)
-) TOP) TRANSLATE RULES)

(TRANSLATE RULES)

ok

TRANSLATION: (DEFLIST ((ABS (LAMBDA (N) (COND
((INUSP N) (MINUS N))
T N ))))) EXPR)

lABS)

EDIT (SYSI BEFORE ((REPLACE PRINT UPI WITH (PROG (Y)
(COND

((ERSETQ (PRINT (00 X))) (TERPRI))
((PROG2 (PRINTRED (QUOTE EDIT OR FORGET
IT)

)) (SETQ Y (CnND
((EQUAL (SETQ Y (RDFLX)) (QUOTE EDIT))

(EDIT
NIL X NIL))

((NULL (EQUAL (TRANSFORM Y (GET (QUOTE EDIT
) (QUOTE RULES))) Y)) (EDIT NIL X (LIST Y (QUOTE STOP))))

(TV)) )) (SYSi Y)
(T (PRINT (QUOTE OK)) ) ) STOP))

This is the trznslation of the CHANGE SYSI modification above.

177

> -



APPENDIX 3

LIST OF MODIFICATIONS

SYSTEMI (SYSI (COND

J (ATOM X) NIL)T (LIST (PRINT,(DO X))))) BEFORE)

ADD (((TRANSLATE $1 AS (EITHER
($1 / (NOT ATOM ))
$ I)) ) (S ADD (2 (EITHER

So))TRANSLATE RULES) EXIT) TRANSLATE RULES)

(TRANSLATE
(TELL S1 (EITHER

SFIRST)
SI / (ATOM) (EITHER

(FIRST

AS (EITHER
fSYSTEM3)
M(ITHER

SSYSTEM3)
ISYSTEMI)) )

SSYSTEMi) 2 (a TRANSLATE -1) (EITHER
(NORMAL))

(aNORMAL))) )

(TRANSLATE
(-END (8ACKTO BE-0) $1 $ END )

AS
(- aTRAN4SLATE -3) -)

(TRANSLATE
(-DO Si1 (NOT ATODA) )

AS
(-(PROG2 (aTRANSLATE 3) NIL) -)

(TRANSLATE
(-BIND (EITKift
($1 / (ATOM)~
00i) TO 1 -

i'9

"""'A_______ V-



A S 
'

A-- ATTACH (CONS (EITHER

CONS QUOTE 1)( TRANSLATE 1))) (" TRANSLATE 5)) (CDDR HISTORY)

(TRANSLATE
(--SAVE $1 ON $1--)

AS
(-- CSETQ 5 (CONS (- TRANSLATE 3) 5)) -- ))

(TRANSLATE
(-- POP $1 -- )AS

(-- (SETQ 3 (CDR 3)) -- ))

(TRANSLATE
(-- IGNORE -- )

AS
(-- NIL -- ))

(TRANSLATE
(--QUIT--)

AS
(-- (LIST NIL) -- ))

(TRANSLATE
(X IS $ (EITHER

(Y MEANS)
MEANS)) $)

AS
(S ADO (3 (EITHER($1 (5 $SET FOO ((/T -1) (QUOTE (- TRANSLATE (/T 2))(QUOTE (* TRAWSLATE (/T -2 -2))))))(($* $SET FOO ((/T -1) (QUOTE (a TRANSLATE (/T 2))))))) ) IS RYKES))

(TRANSLATE

$-- $1 IS (EITHER.
(NOT)
-- ) (EITHER( (COPYTOP (GET (QUOTE IS) {QUOT RULES))))) ..)

AS
(-- ((EITHER

C( (LIST (QUOTE NULL) FOO))(- FOO') ) -- ))

180

I

. ..



(TRANSLATE
(-- TO (EITHER

(($1 I (NOT FUNCTIONP) S))

AS ) (REPEAT 1 $1 AND) 
$1)

(-- (PROG (EITHER
((/T 3))
(NIL))

REPEAT (QUOTE (* TRANSLATE 1)))
TRANSLATE -1)) ))

(TRANSLATE
($ / / (NILL) (REPEAT IF $1 THEN $1) (EITHER

(ELSE $1I)T
) ,,(EITHER

--) I

AS
(-- (COND

SREPEAT ((a TRANSLATE 2) ( TRANSLATE 4)))
EITHER

((T (- TRANSLATE 2)))
((T NIL))) ) (EITHER

-1

(TRANSLATE
F(-- I SI)

AS (-- (SYSTEM4 (= TRANSLATE 3))))

(TRANSLATE
(-- AND (BACK 2) (REPEAT $I AND) $1 -- )

AS I
(-- (AND (REPEAT (QUOTE (= TPANSLATE 1))) (- TRANSLATE -2

(TRANSLATE
(-- OR (BACK 2) (REPEAT $1 OR) $1 -- )

AS
(-- (OR (REPEAT (QUOTE (a TRANSLATE 1))) (a TRANSLATE -2

)) -- ))

181



* (X IS A MEMBER OF Y MEANS MEMBER)

(X I A NUMBER MEANS NUMBERP)

(X IS (EITHER
(AN ATOM)
ATOMIC)) MEANS ATOM)

(X IS GREATER THAN Y MEANS GREATERP)

(X IS LESS THAN Y MEANS LESSP)

(X IS EQUAL TO Y MEANS EQUAL)

(X IS NULL MEANS NULL)

(TRANSLATE
(DEFINE'SI (EITHER((FEXPR) ($SET FOO (QUOTE -1)))

$1 ($SET FOO (a LENGTH (a CAR .- ))))
((SSET FOO (QUOTE 0)))) AS -- )AS

($ DEFLIST ((( CAR (- PUT (, FOO) (- CAR 2) ARGS)) (LAMBDA
(EITHER

r (L A ))

INTL)) (~TRANSLATE -1))) )(EITHER(FEXPR)
SEXPR)" EXPR)) ))

(TRANSLATE
C-- RETURN WITH $1 -- )

AS
(LIST (- TRANSLATE -2)) -- ))

(TRANSLATE

(-- (EITHER
(SEARCHF)
(COUNTF)
(SEARCHP)
(COUNTP)
(LISTP)) $1 SI / (NOT ATOM) (EITHER
($2 S)

AS
C-- (2 3 (- CONS QUOTE 4) HISTORY) -1))

182



(TRANSLATE

AS BREAK $1--
(-(BREAKI NIL T (ADVICE) (CONS (COND
((EQ (CAADR HISTORY) VALUE) (CAADDR HISTORY))
(T (CAADR HISTORY))) (COKS TYTAB (aCONS QUOTE 3)

ADD (CHANGE TRANSLATE RULES)

(TRANSLATE
(CHANGE $1 (EITHER

SiI(ATOM))

AS -- ~ (REPEAT ((REPEAT $ S$1 (NOT ATOM)) 5)
(EDIT 2 (EITHER

(aNORMAL))) ((REPEAT ((REPEAT N (IC 1 1) 1 (aTRANSLATE
2)) (IC 1 2))) STOP) EXIT)

(TRANSLATE'
(TELL $1 (EITHER

(S1 / (ATOM))

(BEFORE)
AFTER)
(INSTEAD OF)) (EITHER
S$)I$ ADVICE))) (EITHER
$1 I (ATOM))

AS
($ EDIT 2 (EITHER

~ NORMAL)) ($SET P00 ( (EITHER
/T 4 2)

(TRANSLATE 1) (BACKTO ADVICE) UPI)))) ($SET FIE
(.(EItHER

/T 4 1)f(1DVICE ( a RNLT ))) M T
INSERT **(FIE)) BEFORE ( F(aP0)
INSERT ( FI JAFTER 'J * FO
REPLACE (* aFOO

1  WITH 1: Fa PIEj1 ) STOP))

183



(TRANSLATE
* (USE (EITHER

(Si FOR (EITHER

( I (EITHER
FOR $1 $0)

(BU (EITHER

AS ) )
(CHANGE (/T 2 1) (EITHER

(E NAME ($* QUOTE (EITHERI/ 2~ M ; SE VAL QUOTE (EITHER
IT 2 3)

(wNORMAL)
(*NORMAL))) ))(EITHER

(2)
NIL) )

(DEFINE NAMEl Qx Y) AS CONS 'A(.VICE DEFINE LIST LIST YLIST ! LAMBDA NIL CDR UNFLATTEN X)

L S (((NAME! (LAMBDA (X Y) (CONS (QUOTE AVC) DFN(LIST (IT Y (LIST (QUOTE LAMBDA) NIL (CDR UNFLATTEN X))I))))) )EXPR)

(TRANSLATE
T4 (NAME $1 $ IN $I (EITHER

AS -

(CHANGE -2 -1 (FLIP
TRANSLATE 3) (BACKTO ADVICE) UPI $'(QOE1) ((QUOTE *)NAM~i (QUOTE -2) 2j (QUOTE -1))

(TPANSLATE

(JEITHER
SMAPLIST)
fMAP)) )

((EITHER
(MAPCAR)

AS (MAPC)) )) 1S ($1 I(NOT EQ FUNCTION) ) )

(s((EITHER
S/T 2 1)
MADLIST)
MAP)) (*TRANSLATE 3 (FUNCTION (LAMBDA (X) (EITHER

SST(CAR X) X ( TRAMNLATE (IT 4))))) )

184



(TRANSLATE
AS INCREMENT $I --)AS

(-- (SETQ 3 (ADDI 3)) -- ))

(TRANSLATE
((EITHER

(BEFORE $1)
1AFTER $)i $1 $0)

AS
(TELL (EITHER

I( NORMAL))) DO -- ))

(CHANGE SYSI (REPLACE PRINT UPI WITH (PROG (Y)
IF (ERSETQ PRINT DO X)
THEN (TERPRI)
IF (PROG2 PRINTRED (EDIT OR FORGET IT) SETQ Y IF

(SETQ Y (RDFLX)) IS EQUAL TO ' EDIT THEN (EDIT NIL X NIL)
IF Y IS EQUAL TO - PILOT THEN (PROG2 SYSTEM X) IF (TRANSFORM

Y GEr ' EDIT ' RULES) IS NOT EQUAL TO Y THEN (EDIT NIL X LIST
Y ' STOP) ELSE Y)

THEN (SYSI Y)
ELSE (PRINT ' OK)) ))

EDIT (SYSI BEFORE ((REPLACE PRINT UP! WITH (PROG (Y)
(CON0

((ERSETQ (PRINT (DO X))) (TERPRI))
((PROG2 (PRINTRED (QUOTE (EDIT OR FORGET IT))) (SETQ V (COND

((EQUAL (SETQ Y (RDFLX)) (QUOTE EDIT)) (EDIT
NIL X NIL))

((NULL (EQUAL (TRANSFORM Y (GET (QUOTE EDIT
(QUOTE RULES))) Y)) (EDIT NIL X (LIST Y (QUOTE STOP))))

(T Y)) )) (SYSI Y)
(T (PRINT (QUOTE OK))) ) ) STOP))

(T8



B IBLIOGRAPHY

(1) Berkeley, E.C., and Bobrow, D.G., (eds.) The Programming

Language LISP: its Operation and Applications, Informa-

tion International, Inc., Cambridge, Massachusetts, 1964

12) Black, F., "A Deductive Question Answering System," Ph.D.

Thesis in Applied Mathematics, Harvard University,

Cambridge, Massachusetts, June, 1964

131 Bobrow, D.C., "A Question Answering System for High

School Algebra Word Problems,* Proc. FJCC, Spartan Press,

Baltimore, Maryland, 1964

[1) Sabrov, D.C., "Natural Language Input for a Computer

Problem Solving System," Ph.D. Thesis in Mathematics,

M.I.T., Cambridge, Massachusetts, September, 1964

151 Bobrow, D.G., *METEOR: A LISP Interpreter fur String

Transformations," in Ill

161 Dobrow, D.G., "The Comit Feature in LISP I1," M.I.T.

Project MAC Memo M-219, Cambridge, Massachusetts,

February 18, 1965

171 Bobrow, D.G., and Teitelman, W., "Format-Directed List

Processing in LISP," BBN Report #1366, Bolt Beranek 3nd

Newman Inc., Cambridge, Massachusetts, April 1966

107



8 Bobrow, D.G., Darley, D., Murphy, D., Solomon, C.J.,

and Teitelman, W., "The BBN LISP System,* BBN Report

#1346, Bolt Beranek and Newman Inc., Cambridge,

Massachusetts, February 1966

[91 Cohen, X., and Wegstein, J.A., "AXLE: An Axiomatic Lang-

uage for String Transformations," Comm. ACM 8, 11,

November, 1965

(101 Crisman, P.A., (ed.) The Compatible Time-Sharing System -

A Programmer's Guide, Second Edition, M.I.T. Press,

Cambridge, Massachusetts, 1965

Ill) Daley, R.C., and Carman, C., 'EDi A Context Editor for

Card Image Files,* M.I.T. Project MAC Memo M-195,

Cambridge, Massachusetts, March 15, 1965

[12) Edwards, D.J., and Minsky, M.L., 'Recent Improvements in

DDT* M.I.T. Project MAC Memo M-60, Cambridge, Massa-

chusetts, November 15, 1963

(131 Engleman, C., "MATHLAB: A Program for On-Line Machine

Assistance for Symbolic Computations," Proc. FJCC,

Spartan Press, Baltimore, Maryland, 1965

[141 Fano, R.M., 'The MAC Systam: The Computer Utility

Approach,' IEEE Spectrum, January, 1965

[151 Farber, D.J., Griswood, R.S., and Polawsky, I.P.,

"SNOBOL, A String Manipulation Language,' JACM II, 1,

1964

(161 Feigenbaum, E., and Feldman, J., (eds.) Computers and

Thought, McGraw Hill, New York, 1963

!Ise

]W~188

! - . - - .



117) Geldard, Frank A., (ed.) Communication Processes, Nato

Conference Series, Vol. 4, Pergammon Press, New York,

1965, (Proceedings of a Symposium held in Washington

in 1963)

1181 Gray, P., The Encyclopedia of the Biological Sciences,

pp 984-986, Reinhold Publishing, New York, 1961

(191 Guzman, A., and McIntosh, H.V., "CONVERT" to appear in

Comm. ACM, August, 1966

1201 Johnson, T.E., "Sketchpad III: A Computer Program for

Drawing in Three Dimensions," Proc SJCC, Spartan Press,

Baltimore, Maryland, 1963

(211 Kaplow, R., Strong, S., and Brackett, J., "MAP: A

System for On-Line Mathematical Analysis," M.I.T.

Project MAC Report TR-24, Cambridge, Massachusetts,

January, 1966

(221 Licklider, J.C.R., "Man-Computer Symbiosis," IRE

Transactions on Human Factors in Electronics, March 1960

(231 Licklider, J.C.R., and Clark, W.E., "O. -Line Man Compu-

ter Communication.," Proc. SJCC, Spartan Press, Baltimore,

Maryland, 1962

t24) Licklider, J.C.R., "Problems in Man-Computer Communica-

tion," in (171

[25] Licklider, J.C.R. Introductory Remarks in 1171

[261 Lindgren, N., "Human ?actors in Engineering, Part II -

Advanced Man-Machine Systems and Concepts,h IEEE

Spectrum, April, 1966

189

- I I I I I



1271 Martin, W.A., and Hart, T., "Synt3x and Display of

Mathematical Expressions," M.I.T. Project MAC Memo

M-257, July 29, 1965

128] Martin, W.A., "Time-Shai.Lng LISP," M.I.T. Project MAC

Memo M-153

1291 Martin, W.A., "A Symbolic Mathematical Laboratory," Ph.D.

Thesis in Electrical Engineering, M.I.T., Project MAC,

Cambridge, Massachusetts, (In preparation)

(301 Maurer, W.D., "Computer Experiments in Finite Algebra,"

M.I.T. Project MAC Memo M-246, CamLridge, Massachusetts,

June 14, 1965

(311 McCarthy, J., "Programs wit Common Sense," Proc. Symp.

on Mech. of Thought Processes I, H=.SO, London, 1959

132) McCarthy, J., "Recursive Functions of Symbolic Ex-

pressions," Comm. ACM, April, 1960

(331 McCarthy, J., et al, LISP 1.5 Programmers Manual, M.I.T.

rress, Cambridge, Massachusetts, 1963

1341 Miller, G.A., "Man-Computer Interaction," in 1171

J351 Minsky, M.L., "Steps Toward Artificial Intelligence,"

in [16)

(36) Minsky, I.L., "A Selected Descriptor-Indexed Biblio-

graphy t the Literature on Artificial Intelligence,

in (161 I

(371 Minsky, M.L., "MATHSCOPE - A Proposal for a Mathematical

Manipulation-Display System," M.I.T. Project MAC Memo

M-l1, Cambridge, Massachusetts, November 18, 1963

190

P on,

-IS pg



1381 Newell, A., Saaw, J.C., and Simon, H.A., "Report on a

General Problem Solving Program," Intern. Confer.

Information Processing, UNESCO House, Paris, 1959

1391 Newell, A., "The Possibility of Planning Languages in Man-

Computer Communication," in (111

1401 Project MAC Progress Report II, July 1964-July 1965,

M.'I.T. Press, Cambridge, Massachusetts, 1965

[411 ReintJes, J.F., and Dertouzos, M.L.. "Computer-Aideu

Design of Electronic Circuits," presented at WINCON Confer.,

Los Angeles, California, February 2-5, 1966

142i Rudloe, H., "Tape Editor," Program Write-up BEN-101, Bolt

Beranek and Newm&n Inc., Cambridge, Massachusetts,

January :, 1962

1431 Samson, P., "Music Compiler," Program Write-up PDP-l,

M.I.T. RLE Computation Center, Cambridge, Massachusetts,

Circa 1962

1441 Samson, P.., "TECO," M.I.T. Project AC Memo M-250,

Cambridge, Massachusetts, July 23, 1965

1451 Schwartz, J.'., Coffman, E.G., and Weisoman, C., "A

General Purpose Time-Sharing System," Proc. SJCC,

Spartan Press, Baltimore, Maryland, 1964

[461 Sutherland, I.E., "SKETCHPAD: A Man-Machine Graphical

Communication System," Proc. SJCC, Spartan Press,

Baltimore, Maryland, 1963

1471 Teitelman, W., "Real-Time Recognition of Hand-Drawn

Characters," Proc..FJCC, Spartan Press, Italtimore,

Maryland, 1964

191

qIl i I - li

- - . -. -- ~.-n- .. ... e.. .- - -. -- - -. - .*



1481 Teitelman, W'., "EDIT and BREAK Functions for LISP,"

M.T.T. Project MAC Memo M-264, Cambridge, Massachusettb,

September 1, 1965

1491 Teitelman, *W., *FLIP - A Format List Processor," M.I.T.

Project MAC Memo M-263, Cambridge, Massachusetts,

September 1, 1965

(501 Wantinan, M.E., "CALCULAID: An 6 n-Line System for Alge-

braic Computation and Analysisil" )4.I.T. Project MAC

Report TR-20, Cambridge, Massa husetts, September, 1965

1511 Yngve, V., "COMIT Programmer's Reference Manual, M.I.T.

Press, Cambridge, Massachusetts, 1961

192

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __q NIP,



BIOGRAPHICAL NOTE

Warren Teitelman was born in Philadelphia on February 21,
M4. He attended Miami Senior High school, Miami, Florida, and
iceived a B.S. degree in Mathematics from the California Institute
f Technology in 1962, and an S.M. degree in mathematics from the
issachusetts Institute of Technology in 1963.

Mr. Teitelman held several scholarships at Caltech from 1958
i 1952, was electfd to Tau Beta Pi, and upon graduating with honor,
is awarded both National Science Foundation and National Defenue
lucation Act Fellowahips. At MIT, he was an NSF fellow and a re-
tarch assistant with Project MAC. He was elected to Sigma Xi in
163, and received the General Electric Prize in 1964.

Mr. Teitelman has been interested in automatic computation and
imputer prugramming sin:ce 1959. He has been employed by the Syn-
trotron laboratory anc4 the Comiputation Center at Caltech; the
istcm Development Corporation of Santa Monica, California; Bolt,
Pranek, and Newman, Inc., of Cambridge, Massachusetts; and Inform-
:ion International, Inc., also of Cambridge. He has accepted a
)sition as Senior Scientist at Bolt, Beranek, and.Newman, begin-
Lng June, 1566

His publications include:

tw Methods for Real-Time Recognition of Hand-Drawn Characters,
Master's Thesis, Massachusetts Institute of Technology,
Department of Mathematics, June 1963

teal-Time Recognition of Hand-Drawn Characters," Proceedings of
the Fall Joint Computer Conference, Spartan Press, Baltimore,
Maryland, 1964

?LPAFormat List Processor" MIT Proiject MAC Memo Mac-M-263,
September, 1965

IDIT and BR~EAK Functions for LISP" MIT Project MAC Memo Mac-M-264,
September, 1965

'ormat Directed List-Processing In LISP" with D.G. Bobrow, SBN
Report #1366, Bolt Beranek and Newman Inc. Cambridge, Mass-
achusetts, April, 1966

the 9DM LISP System" with D.G. Bobrow, et al, SON Report #1346,
Bolt Beranek and Newman, Inc., Cambridge, Massachusetts,
February, 1966

193



UNCLASSFIED
Seculty Caesliflcatioe

DOCUMENT CONTROL CATA - R&D
Uifl t~flJ,~of MOIN 6.A wob E AM.MAE sflbtt -It b. .. t-4 .A- A. .,nD e. .d ... 41..d)

1. 010 sATM6n ACTIVITY (c...no .R*_. a. MPOn SECURITY CLAI.SICATIO

Massachusetts Institute of Technology UNCLASSIFIED
Project MAC 8. *MOu,

1. M*tOo? ?,11.1

PILOT: A Step Toward Nan-Machine Symbiosis

A. 05iClprIVE Otes ITT" , . Air 4 ,M)

Doctorel Thesis, sthe& 't
S. (&..NI I oo,44 11,fIef .. p., 'taf.

Teitelman, Warren
S. 11Cpoo DATE To TOTAL NO. OP PAsI*S ?a 40 . O Mers

- September, 1966 191 51
9. CCk*AC1 0M QA%? 40 90, ORIMATORS MEPORT WVVIS,

Office of Naval Research. Nonr-4102(01) MAC-TR-32 (THESIS)

NR 048-189
So. OT.IA E.00 R 0N',V (Any., 0 .. IW. y 6.

,R 003-09-01 ""' '

MC AV&ILA~tLgTV1I,MTA1I~ft %0TIOAS

Distribution of this document is unlimited.

11. SU PLAIKIINTARY *eTKS IS. SPONSORIN ILITA Y ACTIVITY

N Advanced Research Projects Agency
None I .)-200 Pentagon

_ _ _ _ __ Washington, D. C. :0301
'3. ASTM*Cf PILOT is a programming system, constructed in LISP. dttagned to ease the

familiar program-development sequence: writs code, run the program, make changes,
witte more code, run the program again, etc. As a prorram becomes more complex,
making chaTes becomes harder and harder, because the Imptieations of changes are
harder fo anticipate. In the PILOT system, the computer plays an active role in
this evolutionary process by allowing changes to be effected immediatelv, and In
ways that seem natural to the user. The user of PILOT feels he Is giving advice
to the computer about the operation of his programA and that the syntem then
perform* the necessary work. PILOT Is thus an interface between the user and his
programe monitoring both user requests and program operation. The user may easily
modify PILOT system operation by giving it advice. This allows him to develop his
own language and gradually shift onto PILOT the burden of performing routine but
increasingly complicated tasks. In this way, he can concentrate on conceptuil
difficulties in the original problem, rather than bogging down on the niggling tasks
I -diting, rewriting, or adding to his program.. Two detailed examples are

,lettd.
I' NOll

Artificial intelligence Han-machine interaction Real-time computer systems
Computer problem solving ultiple-secass computers Time-sharing
Heuristic programing On-line com.puter systems Time-shared computer systems

DD,p'.... 1473 (MALT.) Ucz.ssM
Soclef Chotd~


